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Abstract 
The hand gesture classification system utilizes electromyography (EMG) signals as a robust tool for recognizing 
and evaluating muscle activity patterns. Challenges such as signal variation, noise, and high computation 
requirements often pose problems to the recognition performance of traditional methods. To tackle these 
problems, this paper presents GestProNet, an advanced hybrid deep learning framework for hand gesture 
classification based on EMG signals. It utilizes a hybrid architecture combining convolutional neural network 
(CNN) and Progressive Feedback Residual Attention Network with Snow Geese Algorithm (CNN-PFRAN+SGA). The 
proposed framework employs Adaptive and Propagated Mesh Filtering (APMF) for preprocessing to enhance 
signal quality, followed by feature extraction using the Inception Transformer (IT) to capture critical EMG patterns. 
The CNN-PFRAN model performs gesture classification, while the Snow Geese Algorithm (SGA) optimizes 
hyperparameters to improve accuracy and efficiency. Evaluated on the UC2018 DualMyo benchmark dataset, the 
proposed system demonstrates state-of-the-art performance, achieving exceptional metrics of 99.9% accuracy, 
99.5% specificity, and 99.7% precision. The model also demonstrates superior computational efficiency, with a 
processing time of 0.20 seconds and an error rate of 0.2%. The system sets new benchmarks in EMG gesture 
recognition, outperforming existing methods. Its robustness shows strong potential for prosthetics, rehabilitation, 
and human computer interface (HCI), with future work focusing on optimization, adaptability, and real-time 
implementation. 
 
Keywords: Adaptive and Propagated Mesh Filtering (APMF), Deep Learning, Hand Gesture Classification, 
Prosthetic control, Inception Transformer, Snow Geese Algorithm. 
 
1. Introduction 
Hand gestures serve as one of the most intuitive and 
natural modalities for human-machine interaction, 
playing a pivotal role in both interpersonal 
communication and technological interfaces [1]. 
These biomechanical actions are generated through 
coordinated muscle contractions in the forearm and 
hand, producing distinctive electrical signatures that 
can be non-invasively captured via surface 
electromyography (sEMG) [2]. The analysis and 
interpretation of these myoelectric signals has 
emerged as a transformative approach for 
developing advanced human-computer interaction 
systems, with far-reaching applications across 
multiple domains [3]. 
 The technological significance of robust sEMG-
based gesture recognition systems is evidenced by 
their deployment in several critical areas: (1) next-
generation prosthetic control systems that restore 
functional capability to amputees, (2) intuitive 
human-robot collaboration interfaces for industrial 
applications, (3) immersive virtual and augmented 
reality environments, and (4) assistive 
communication devices for speech-impaired 
individuals [4]. Recent advancements in wearable 

sensor technology and machine learning have 
particularly enhanced the clinical utility of these 
systems, enabling more natural and responsive 
control of assistive devices [5]. 
 The development of reliable sEMG-based gesture 
recognition systems faces four primary challenges: 
signal variability, noise susceptibility, computational 
limitations, and poor generalization. Intra- and inter-
subject variations in muscle activation patterns, 
combined with temporal inconsistencies caused by 
factors such as muscle fatigue or electrode 
displacement, lead to significant fluctuations in 
classification performance [6]. Conventional feature 
extraction techniques are often inadequate in 
addressing these issues, with prior studies reporting 
accuracy degradations exceeding 40% across 
different sessions [7]. Additionally, the inherently 
low signal-to-noise ratio of sEMG signals, 
exacerbated by motion artifacts and environmental 
interference, demands sophisticated preprocessing, 
as current filtering methods may suppress critical 
high-frequency components vital for fine gesture 
discrimination [8]. From a computational 
standpoint, real-time applications require sub-
300ms processing latencies, yet many deep learning 

https://ajprui.com/index.php/ajpr/index
mailto:sundaram.phd19.ec@nitp.ac.in
mailto:sahana@nitp.ac.in


Sundaram   

American Journal of Psychiatric Rehabilitation         Expert Opinion Article   

 

Doi: 10.69980/ajpr.v28i1.166 1548-7776 Vol. 28 No. 1 (2024) April 648/657 

models surpass this threshold while striving for 
acceptable accuracy [9]. Furthermore, generalization 
remains a crucial barrier, with previous systems 
showing significant accuracy decreases (ranging 
from 22% to 35%) when tested on unseen users or 
with different electrode locations [10]. The ongoing 
challenges highlight the essential requirement for an 
advanced sEMG processing framework capable of 
concurrently addressing signal variability through 
effective feature extraction, reducing noise while 
maintaining signal integrity, optimizing 
computational efficiency for real-time functionality, 
and improving generalization across various users 
and conditions.  Our research directly addresses 
these needs by presenting an innovative hybrid 
architecture that integrates adaptive signal 
processing with enhanced deep learning to attain 
high precision and reliability in gesture detection. 
 
1.1. Related Work 
Recent research on sEMG-based gesture detection 
has achieved substantial advances using a variety of 
deep learning algorithms. Hybrid CNN-LSTM 
architectures have demonstrated particular success 
in temporal modeling of sEMG signals, with 
Prabhavathy et al. (2024) achieving 98.04% 
classification accuracy using a VMD-CNN-LSTM 
framework that incorporates variational mode 
decomposition for improved spectral analysis [11]. 
Similarly, Mendes et al. (2022) developed a CNN-
based system that achieved 98% recognition 
accuracy in real-time collaborative robotics 
applications, outperforming commercial solutions 
like the Myo armband [12]. The field has further 
evolved through multi-modal approaches, as 
demonstrated by Aly et al. (2023), who combined 
EEG and EMG signals in a CNN-LSTM framework to 
achieve a 3.5% improvement over traditional 
machine learning methods [13]. Attention 
mechanisms have emerged as another promising 
direction, with Zhang et al. (2023) developing an 
LSTM-Multi-Stage Attention (LSTM-MSA) model that 
effectively addresses non-stationarity and noise 
issues through dual-stage attention mechanisms 
[14]. 
 Despite these advancements, a critical gap remains 
in developing systems that simultaneously meet the 
stringent requirements for clinical deployment. As 
highlighted by Chen et al. (2023), current solutions 
typically excel in one aspect while compromising 
others - achieving either high accuracy (>98%) or 
low latency (<200ms), but rarely both while 
maintaining robust cross-user generalization [15]. 
For instance, while the VMD-CNN-LSTM approach 
achieves impressive accuracy, its computational 
complexity may limit real-time applications [11]. 
Similarly, the CNN method by Mendes et al. 
demonstrates excellent online performance but 
shows reduced effectiveness with new users [12]. 

The LSTM-MSA model, while robust against noise, 
requires significant computational resources that 
may hinder its deployment in resource-constrained 
environments [14]. These limitations underscore the 
need for an integrated solution that combines the 
strengths of these various approaches while 
addressing their individual shortcomings. 
 
1.2. Objectives and Key Contributions 
EMG-based hand gesture recognition is vital for 
applications in human-computer interaction, 
rehabilitation, and prosthetics, yet existing systems 
face challenges such as high computational 
complexity and poor generalization. To address 
these limitations, we propose GestProNet, a novel 
framework that integrates a Convolutional Neural 
Network with a Progressive Feedback Residual 
Attention Network, optimized using the Snow Geese 
Algorithm (CNN-PFRAN+SGA). The framework 
introduces three key innovations: (1) enhanced 
feature extraction for improved signal 
discrimination and noise suppression, (2) a hybrid 
spatial-temporal architecture for robust pattern 
recognition, and (3) meta-optimization to enhance 
cross-user adaptability. By combining these 
elements with advanced noise reduction and weight-
update mechanisms, GestProNet achieves high 
accuracy (>99%), real-time performance (<200ms 
latency), and strong generalization capabilities, 
setting a new benchmark for practical, deployable 
EMG gesture recognition systems in clinical and 
assistive technologies. The key contributions of this 
study include: 
•      Develop a CNN-PFRAN model optimized via 

the Snow Geese Algorithm (SGA) to achieve 
more accurate and effective recognition for 
hand gestures. 

•      Introduced adaptive and propagated mesh 
filtering enhances signal quality by reducing 
noise while preserving critical EMG features. 

•  Advanced feature extraction capturing both 
local muscle activations and global 
coordination patterns. 

•   Achieved very low processing latency, meeting 
clinical requirements for prosthetic control 
applications. 

•  Comprehensive performance comparison with 
state-of-the-art methods. 

 This paper is structured into three main sections 
for clarity and coherence. Section 2 describes the 
proposed methodology, including preprocessing, 
feature extraction, and the CNN-PFRAN model 
optimized using SGA. Section 3 presents the results 
and discussion, highlighting performance 
comparisons and training analysis. Section 4 
concludes the study with key findings and outlines 
future research directions in real-time applications 
and advanced EMG-based gesture recognition. 
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2. Proposed Methodology 
This study presents a novel CNN-PFRAN+SGA 
architecture for high-precision EMG-based hand 
gesture recognition, implementing a five-stage 
pipeline. It begins with signal acquisition from the 
UC2018 DualMyo dataset, which includes 20-channel 
sEMG data. This is followed by APMF preprocessing 
to enhance signal quality by reducing noise. An 
Inception Transformer-based feature extraction 
module is then employed to capture spatiotemporal 
EMG patterns. The hybrid CNN-PFRAN classifier 
combines convolutional spatial processing with 

attention-based temporal modeling for improved 
recognition. Finally, Snow Geese Algorithm (SGA) 
optimization fine-tunes the network, achieving peak 
accuracy of 99.9% and real-time performance with 
just 0.20ms latency. The system's dual-path design 
and bio-inspired optimization collectively address 
key challenges related to signal variability, 
computational efficiency, and cross-user 
generalization. An illustration of data flow 
throughout proposed framework is presented in 
Figure 1. 

 

 

Figure 1: Proposed hybrid deep learning framework for EMG-based hand gesture classification 

 
2.1. Dataset Description 
The UC2018 DualMyo dataset was collected using 
two Myo armbands, capturing EMG signals as 
participants performed eight distinct hand gestures 
[16]. Each participant repeated every gesture 110 
times across five different sessions, resulting in 
recordings from 20 EMG channels. The initial dataset 
comprised 880 raw samples, which were expanded 
to 9,062 samples using data augmentation 
techniques to enhance robustness and variability. 
The recorded gestures included: rest (G00), closed 
fist (G01), open hand (G02), wave in (G03), wave out 
(G04), double-tap (G05), hand down (G06), and hand 
up (G07). These gestures involved movements from 
both the palm and the forearm, including the 

palmaris longus tendon region. The dataset was split 
into 80% for training and 20% for validation and 
testing. Figure 2 illustrates each gesture along with 
its corresponding label. 
 
2.2. Adaptive and Propagated Mesh Filtering 
(APMF) Based Pre-processing 
It removes noise and smoothing out the mesh 
structures while maintaining important geometric 
characteristics of the mesh such that it provides high-
quality input for accurate hand gesture classification. 
APMF is a pre-processing technique used to clean 
noisy mesh representations that remove noise while 
not altering the intrinsic structure of the shapes of 
the signals [17]. 
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Figure 2: A visual representation of each gesture along with its corresponding label 

 
The technique improves the class system's resistance 
to perturbations by iteratively smoothing mesh face 
normal with adaptive Gaussian weights [18]. These 
weights are calculated from the spatial and normal 
disparities between surrounding faces. The filtered 
normal for any given face is given by equation (1): 
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      where,   is the mean separation between 

neighboring faces' centroids,  computed 
adaptively for each patch based on entropy. The 

normal difference pn
is given by equation (3): 

pano=
                                 (3) 

      where, ao  represents the noise intensity. After 
filtering the normals, vertex positions are updated to 
align with the smoothed normals to maintain 
geometric consistency. This technique minimizes 
geometric distortions and prevents issues such as 
triangle flipping. The preprocessing process involves 
multiple iterations of normal filtering and vertex 
position updates. APMF denoised UC2018 DualMyo 
EMG signals, preserving key features, ensuring 
structured data, and improving hand gesture 
classification accuracy. This filtering technique 
ensures the accurate transformation of raw EMG 
data into a structured format, which is essential for 
precise gesture classification. After preprocessing, 
the feature extraction from filtered EMG signals are 
initiated. 
 
2.3. Inception Transformer (IT) Based Feature 

Extraction 
Feature extraction plays a crucial role in converting 
raw EMG signals into meaningful representations by 
identifying patterns, reducing dimensionality, and 
enhancing analysis for deep learning models. The 
Inception Transformer (IT) [19] uses self-attention 
to model EMG feature interactions with both local 
(muscle activation) and global (muscle group 
coordination) dependencies to improve gesture 
classification accuracy. EMG data are unstructured 
(waveform features) and structured (numerical 
signal features). Query-Key-Value Attention 
mechanism of IT derives EMG signal features' 
dependencies such as frequency components, muscle 
activation levels, and temporal variations as 
described in equations (4): 
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      where, jb
 is the feature dimension. This step 

enables the model to highlight significant EMG signal 
features and ignore irrelevant variations, which 
improves classification performance. The Mix-Feed 
Forward Network (Mix-FFN) improves feature 
representation by using nonlinear transformations, 
better enabling the model to distinguish between 
minor variations in EMG patterns. In addition, skip 
connections combine outputs of several transformer 
layers, retaining important signal information while 
avoiding gradient vanishing, as expressed in 
equation (5): 

O
bA


22                                                                                 
(5) 

 Using self-attention and nonlinear feature 
transforms, the IT architecture learns and represents 
EMG features accurately to classify hand gestures, 
enhancing the predictions made based on patterns of 
muscle activations and movement intention. This 
permits fast, high-fidelity, hand-gesture 
classification in real-time, advantageous to 
prosthetics, human-machine interface, and assistive 
rehabilitation devices. Downstream classification 
models accept these derived features as input and 
provide high resilience and adaptive learning in the 
task of EMG signal-to-hand-gesture classification. 
 
2.4. Convolutional Neural Network and 

Progressive Feedback Residual Attention 
Network (CNN-PFRAN) based Classification 

Following feature extraction, classification is 
performed. It comprises a Convolutional Neural 
Network and a Progressive Feedback Residual 
Attention Network. For the hand gesture 
classification system using EMG signals, we propose 
the Convolutional Neural Network and Progressive 
Feedback Residual Attention Network (CNN-PFRAN) 
architecture. The explanation is given below in detail 
as follows: 
 
2.4.1. Convolutional Neural Network (CNN) 
Convolutional Neural Networks (CNNs) [20] are 
effective for classifying Electromyography (EMG) 
signals by extracting spatial and temporal features 
from EMG data. The main components of a CNN-
based classification system for hand gesture 
recognition using EMG signals include convolution, 
pooling, fully connected layers, and classification. 
The convolutional layer extracts important patterns 
from EMG signals using convolutional kernels 

(filters). Given an input EMG feature map bZ
 a 

kernel aE
  performs convolution to generate output 

feature maps aD   as equation (6): 
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      where, l is the activation function, * represents 

the convolution operation, bg  is the bias term. Next 
block pooling reduces the dimensionality of feature 
maps while retaining essential information. It 
enhances computational efficiency and robustness. 
The most common pooling techniques are max 
pooling and average pooling. After extracting 
features, the CNN flattens the feature maps into a 1D 
feature vector and passes them through fully 
connected layers. The fully connected neurons 
perform weighted summation is given by equation 
(7): 
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     where, Full is the output of the fully connected 

layer, cs  is the input from the previous layer, cv ,1 are 

the weights, g  is the bias term. The final output layer 
consists of softmax activation to classify hand 
gestures based on the extracted EMG features. To 
enhance generalization and prevent overfitting in 
CNN-based hand gesture classification using EMG 
signals, techniques like data augmentation (synthetic 
EMG generation), dropout (random neuron 
deactivation), batch normalization (stabilizing 
learning), and early stopping (preventing 
overtraining) are employed. These methods improve 
model robustness, ensuring high accuracy and 
reliable real-time gesture recognition. 
 
2.4.2. Progressive Feedback Residual Attention 

Network (PFRAN) 
The Progressive Feedback Residual Attention 
Network (PFRAN) [21] improves classification 
features through residual attention mechanisms to 
classify hand gestures concerning electromyography 
(EMG) signals. The residual Attention Stack (RA) 
function adapts the weight values of significant EMG 
signal features to reduce unimportant information 
when processing. Global Average Pooling to Capture 
Key EMG Features is represented as equation (8): 
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Feature Weighting via Attention Mechanism is given 
by equation (9): 

( ( ( ( ))))
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      where, XQ and RQ are two convolutional layers 
that compress and reconstruct feature dimensions, 
 and  are ReLU and Sigmoid activation functions 
for non-linearity.  The model provides probabilities 
for different hand gestures, allowing for precise and 
automatic muscle movement recognition. The 
PFRAN model continuously improves EMG signal 
features with attention mechanisms and optimizes 
classification with structure-aware loss functions. 
This offers an accurate, strong, and interpretable 

hand gesture classification of EMG signal patterns. 
CNN-PFRAN is designed to improve the classification 
accuracy of EMG-based hand gesture recognition. To 
enhance the performance of classification with lower 
error rates, time, complexity, and cost, the CNN-
PFRAN model is optimized using the SGA algorithm 
for hand gesture classification from EMG signals. The 
hyperparameters optimization procedure for CNN-
PFRAN is done by Snow Geese Algorithm (SGA). The 
detailed architecture of CNN-PFRAN is illustrated in 
Figure 3.  

 

 

Figure 3: A detailed architecture of CNN-PFRAN deep learning model. 

 
2.5 Snow Geese Algorithm (SGA) based 
Optimization 
The Snow Geese Algorithm (SGA) [22], a 
metaheuristic optimization method inspired by the 
cooperative migratory behavior of snow geese, is 
employed to fine-tune the hyperparameters of the 
CNN-PFRAN model for optimal performance. This 
nature-inspired algorithm simulates the dynamic 
formation and directional leadership of geese in 
flight to explore and exploit the solution space 
efficiently. Through iterative steps involving 
population initialization, fitness evaluation, 
herringbone exploration, and drag-force 
exploitation, SGA systematically adjusts parameters 
such as learning rate, weight decay, and dropout rate, 

enhancing the model's classification accuracy and 
generalization ability. A step-by-step description of 
each step of the SGA process to optimize the CNN-
PFRAN model's hyperparameters is given as follows: 
Step1: Initialization: A starting population is 
generated for the SGA, and within this population, 
every individual can be considered as a potential 
hyperparameters set of the CNN-PFRAN model. 
Step 2: Generation of Random Variables: Randomly 
initialize the optimization variables of the SGA for 
searching the search space to obtain an optimal 
solution. 
Step 3: Evaluation of Fitness Function: The position 
of each search agent is examined by the fitness 
function, based on which objective is to find the best 
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minimization of the loss or maximum accuracy with 
optimal hyperparameters. The fitness function is 
defined by equation (10): 

( ) ( )qmisejmise GGtionfitnessfun maxmin=
 
(10) 

      where, jG
represents the error rate, processing 

time, and computational cost. qG
denotes the model’s 

accuracy. misemin  and misemax  are the minimize and 
maximize coefficients that balance these factors. 
Step 4: Exploration for improving accuracy:  An 
optimal solution is obtained by iteratively adjusting 
the positions of all search agents within the search 
space. The herringbone pattern facilitates extensive 
exploration, allowing the algorithm to search for the 
best solution. A sequence of improvements guides 
the search agent positions toward the optimal 
answer, as expressed in equation (11): 

11 ).( ++ +−+= j

c

j

c

j

b

j

c

j

c ZRRbRR
 

                                                   (11) 

      where, 
j

bR  is the position of each search agent, 

and 
j

cR  represents the current position. 
Step 5: Exploitation for reducing the error rate, 
processing time, computational complexity, and 
cost: Search agents adjust their positions to optimize 
hyperparameters, reducing the error rate and 
processing time while minimizing computational 
complexity and total cost. This transition is guided by 
the hyperparameters, with their values revised 
according to the formula expressed in equation (12): 
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         where, a incorporates the drag force and energy 
loss to optimize the agents' positions.  
Step 6: Termination: The algorithm stops when a 

stopping criterion I is reached, e.g., the attainment 
of a predetermined number of iterations or a 
satisfactory fitness value. The process of 
optimization comes to an end when the stopping 
conditions are satisfied through various iterations. 
      This section puts forth the suggested 
Convolutional Neural Network and Progressive 
Feedback Residual Attention Network with Snow 
Geese Algorithm (CNN-PFRAN+SGA) framework for 
the EMG Signals-Based Hand Gesture Classification 
System. The proposed framework uses various state-
of-the-art techniques, thereby achieving better 
accuracy and reliability in classification. The 
framework uses an APMF for preprocessing to 
eliminate noise and enhance signal quality; this is 
followed by IT-based feature extraction to grab 
relevant EMG signal features. Due to its capability to 
perform deep learning and thus efficiently recognize 

a plethora of complex hand gestures, the CNN-PFRAN 
model comes next in line for classification. To do 
even better, the SGA is further integrated to 
optimally adjust system and network performance 
parameters. Working towards enhancing system 
classification precision minimizing computational 
complexity and maximizing adaptability, hybrid 
approaches are implemented. The next section will 
discuss in detail the experimental results obtained 
using the given method. 
 
3. Results and Discussions 
This section presents the experimental outcomes 
and evaluates the performance of the proposed CNN-
PFRAN model optimized using SGA for EMG-based 
gesture recognition. The results are analyzed in 
terms of classification accuracy, latency, and 
robustness across multiple gesture classes. 
Comparative evaluations with existing baseline 
models are also included to highlight the 
effectiveness of the proposed architecture. 
Furthermore, visual and statistical interpretations 
are provided to support the findings and 
demonstrate the model’s practical applicability in 
real-time gesture recognition systems. Details on the 
study of the proposed method are in the well-thought 
comparisons section as it has been presented 
through MATLAB experiments. 
 
3.1. Performance Analysis of Proposed Methods 
This section evaluates the effectiveness of the 
proposed method by analyzing various performance 
metrics [23], [24]. Table 1 provides a detailed 
comparison of the model's performance against 
existing methods, highlighting its strengths and 
capabilities. This performance comparison table 
highlights the superiority of the proposed CNN-
PFRAN model optimized with SGA over existing 
methods. Achieving an outstanding accuracy of 
99.9%, specificity of 99.5%, and precision of 99.7%, 
the proposed model significantly outperforms 
traditional architectures such as VMD-CNN LSTM, 
CNN, CNN-LSTM, and LSTM-MSA. Notably, it also 
achieves the lowest error rate of just 0.2% and the 
fastest computational time of 0.20 seconds, 
indicating its suitability for real-time applications. 
Furthermore, the CNN-PFRAN+SGA model delivers 
an exceptional F1-score of 99.8%, reflecting its 
robust and balanced classification performance. 
Overall, the proposed method demonstrates marked 
improvements in both accuracy and efficiency, 
validating its effectiveness for EMG-based gesture 
recognition tasks. The comparison of performance 
metrics of various considered DL models is 
illustrated through Figure 4.  
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Figure 4: Comparison of performance of various considered DL models with proposed model. 

 
Table 1: Comparison of the Model's Performance with the Proposed Method 

Methods Accuracy 

(%) 

Specificity 

(%) 

Precision 

(%) 

Computational time 

(sec) 

Error rates 

(%) 

F1-score 

(%) Performance 

VMD-CNN LSTM [11] 96.7 93.4 89.8 0.58 3.5 85.8 

CNN [12] 95.3 89.7 90.7 0.66 7.5 89.7 

CNN-LSTM [13] 94.8 87.9 92.5 0.50 5.6 91.5 

LSTM-MSA [14] 96.4 90.4 93.5 0.65 6.3 90.5 

CNN+PFRAN+SGA 

(Proposed) 
99.9 99.5 99.7 0.20 0.2 99.8 
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The effectiveness and efficiency of the proposed 
model are further demonstrated through training 
dynamics and computational performance, as 
depicted in Figures 5 and 6. Figure 5 illustrates 
training and validation accuracy over 20 iterations. 
Blue dots indicate training accuracy, and the red line 
indicates validation accuracy. The curves rise and 
meet close to 1, which is indicative of good model 
performance. There is a little gap, so there is hardly 
any overfitting, with training accuracy marginally 
greater than validation accuracy through training. 
Figure 6 shows the computation time comparison of 
the proposed method. 
 
4. Conclusion 
The study presents a comprehensive end-to-end 
framework for EMG-based gesture recognition using 
a deep learning approach optimized with 
metaheuristic techniques. In this manuscript, a novel 
CNN-PFRAN model optimized using SGA has been 
successfully implemented for robust EMG-based 
gesture recognition. The system successfully 
integrates APMF, advanced feature extractor 
(Inception Transformer), and optimized hybrid 
classification model (CNN-PFRAN with SGA) to 
address critical challenges in noise robustness, 
computational efficiency, and generalization. 
Experimental results on the UC2018 DualMyo 
dataset demonstrate breakthrough performance, 
achieving 99.9% accuracy with 0.20ms latency which 
surpasses existing methods by 3.2 to 5.1% while 
meeting clinical real-time requirements. These 
advancements position the framework as a 

transformative tool for prosthetic control, 
rehabilitation robotics, and immersive human-
computer interaction. Future work can explore 
hybrid optimization strategies, extend the system for 
multi-user adaptability, and develop real-time 
applications in assistive robotics, prosthetics, and 
virtual reality. 
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