
A. A. Navish 

American Journal of Psychiatric Rehabilitation         Expert Opinion Article   

 

Doi: 10.69980/ajpr.v28i4.226 1548-7776 Vol. 28 No. 4 (2025) April 74/86 

Exploring Various Representation of Genetic Sequences Via the 
Chaotic Approach 
 

A. A. Navish1*, L. Praveenkumar2 , G. Mahadevan3 , S. Riyasdeen4, S. Ganesan5 

 

1*,2,3Department of Mathematics, The Gandhigram Rural Institute (Deemed to be University), Dindigul, Tamil Nadu, 
India - 624 302. 
4Department of Physics, Government Polytechnic College, Kottur, Theni, Tamil Nadu, India - 625 534. 
5Department of Mathematics, Government Polytechnic College, Kaniyalampatti, Karur, Tamil Nadu, India - 621 301. 
 
*Corresponding Author: A. A. Navish 
*Email:  aa.navish2@gmail.com 
 
Abstract: This study investigates the genetic codes of the Influenza virus through various visual representations, 
including matrix representation, chaos game representation (𝒞𝒢ℛ) and DNA walks. By applying chaotic concept to 
these genetic code visualizations, we can able to capture even the smallest changes quickly and precisely. Unlike 
previous studies that relied on outdated Java software, our research uses Python and the Biopython library, 
providing a modern and easily accessible approach. As a result, our work offers new insights into the chaotic nature 
of genetic sequences and presents valuable tools for mathematicians, biologists and computer scientists to better 
understand genetic data through fractal geometry. 
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1 Introduction 
Mathematical biology is an exciting and rapidly 
growing field that applies mathematical models to 
understand and analyze biological concepts and 
processes. Since grasping biological concepts can be 
challenging, mathematical modeling provides a way 
to overcome this difficulty by offering insights into 
aspects that are not directly observable. It allows us 
to describe biological systems using mathematical 
language, making complex processes more 
understandable. Over the past few decades, various 
branches of mathematics, such as calculus, 
probability theory, statistics, linear algebra, graph 
theory, algebraic geometry, topology, dynamical 
systems, differential equations and coding theory 
have been extensively used to study biological 
phenomena. 
Despite the availability of these mathematical tools, 
analyzing biological structures remains a difficult 
task due to the irregularity and complexity of 
biological systems, which do not follow Euclidean 
geometry. In such cases, the one of the chaotic 
approach known as fractal analysis offers a 
promising solution for handling non-Euclidean 
objects. Fractals are irregular, self-similar structures 
that can be used to study complex biological 
patterns. 
Genetic codes are fundamental units that serve as the 
blueprint for all biological processes, dictating how 
organisms grow, develop, and function at the 
molecular level. By studying these basic units, we can 
gain insights into the broader functioning of the 
entire organism. Inspired by this idea, our research 
focuses on understanding the genetic makeup of 
Influenza, a well-known zoonotic disease. To explore 

the genetic secrets of the Influenza virus, we convert 
its genetic codes into different visual representations 
using mathematical models. Although these visual 
representations appear similar, we use a parameter 
from the chaotic world called the fractal dimension 
to examine the characteristics of each 
representation. 
The fractal dimension measures how the complexity 
of a pattern changes with scale. It reflects the space-
filling potential of a pattern and is highly sensitive, 
with even small changes being detectable through 
fractional dimension values. In this study, we analyze 
different representations of the Influenza virus's 
genetic code, including matrix representations, 
indicator matrices, 𝒞𝒢ℛ  and DNA walks. While 
many researchers have explored these genetic 
representations, only a few have used chaotic 
approaches like fractal analysis. Moreover, most of 
these studies relied on Java-based software, which is 
now outdated and no longer easily accessible. 
Furthermore, this analysis is recently being done on 
the Covid investigations to understand and identify 
the structural behaviors of the coronavirus. Fernade 
et al. [3] conducted research on coronavirus based on 
the chaos theory. Hassan et al. [5] utilized fractal 
analysis to examine the geographical distribution of 
purine and pyrimidine. Mandal et al. [2] explored the 
publicly available SARS-CoV-2 genomes using a 
multifractal method. Sid Ali [7] used the wavelet 
transform to assess the signature of the mutated 
corona virus. In which many of them used java based 
software. 
In contrast, our work is based on Python, a modern 
and widely used programming language. Specifically, 
we used Biopython and have provided the codes we 
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developed for our analysis. We hope that this work 
will be useful for mathematicians, biologists and 
computer-based researchers and providing a fresh 
perspective on analyzing genetic data through the 
lens of chaos theory. 
 
An Quick Overview of Influenza 
Influenza is a contagious RNA virus that mainly 

affects the respiratory system, causing seasonal flu 
outbreaks. It is classified into four types: A, B, C, and 
D, in which Influenza A being the most important for 
human infections. RNA viruses are unstable because 
their genetic material is more prone to errors during 
replication, leading to frequent mutations. This rapid 
mutation allows the virus to change quickly and 
evade the immune system. 

 

 
Figure 1: Segments of Influenza A 

 
The Influenza A virus has 8 RNA segments (refer 
Figure 1). Each one has a specific job in helping the 
virus infect and spread. Segment 1 makes PB2, a 
protein that helps the virus copy its RNA inside cells. 
Segment 2 makes PB1, which works with PB2 to 
make more viral RNA. Segment 3 makes PA, another 
protein that helps in making RNA. Segment 4 makes 
Hemagglutinin (HA), a surface protein that helps the 
virus attach to and enter host cells. Segment 5 makes 
Nucleoprotein (NP), which binds to the virus’s RNA 
to help it replicate. Segment 6 makes Neuraminidase 
(NA), a protein that helps the virus leave infected 
cells and spread. Segment 7 makes Matrix proteins 
(M1 and M2). M1 helps the virus assemble and leave 
the host cell, while M2 helps the virus uncoat inside 
the cell. Finally, Segment 8 makes NS1 and NS2. 
These proteins help the virus avoid the immune 
system and export viral RNA from the host cell. The 
most remarkable segments are HA and NA because 
they change to avoid immune detection. Also M2 and 
NS1 are important for the virus to escape the 
immune system and continue spreading. 
 
 
 

2 Data Acquisition 
The primary objective of this study is to explore the 
various representations of codon sequences using a 
chaotic approach. To ensure a comprehensive 
analysis, we do not limit our focus to a single sample 
sequence. Instead, we incorporate codon sequences 
from distinct Influenza A, allowing for a broader 
exploration. For our study, we have taken three 
datasets of H1N1 Influenza A. The first dataset 
corresponds to the initial strain discovered in 1918, 
famously known as the Spanish flu. The remaining 
two datasets are from the 2009 pandemic, collected 
from different regions and are commonly referred to 
as the swine flu. The codon sequences used in this 
study are sourced from the National Center for 
Biotechnology Information (NCBI) database, a 
reputable and extensive repository for biological 
data. Detailed information about the data is 
presented in the following Table 1. Throughout this 
study, A  1  represents the 1918 H1N1 virus 
(https://www.ncbi.nlm.nih.gov/Taxonomy/Browse
r/wwwtax.cgi?id=88776), while A  2  and A  3 
represent the 2009 H1N1 virus strains 
(https://www.ncbi.nlm.nih.gov/genomes/FLU/Swi
neFlu.html) obtained from two different regions.
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Segment Base Pairing (bp) Count 
A 𝟏 A 𝟐 A 𝟑 

1 2280 2280 2280 
2 2274 2274 2274 
3 2151 2151 2151 
4 1220* 1701 1701 
5 1497 1497 1497 
6 1410 1410 1410 
7 982 982 982 
8 838 863 863 

 
Table 1: The base pair count of different segments of Influenza A, obtained from cDNA sequences on NCBI, 
is provided. The link to access these sequences is given in the Appendix (refer Table 5). The cDNA used in 

the experiment is complete, except for segment 4 of A 𝟏, which is partial. 
 
From the table, we see that most of the base pair 
counts are the same, but there are differences in 
segment 4 and segment 8. This suggests that, while 
the virus’s overall structure stays the same, these 
two segments might have gone through changes. 
Sequence variation means the virus's genetic code 
has changed without affecting the segment's length. 
This usually happens when the virus mutates over 
time, which is called antigenic drift. RNA viruses like 
the flu often mutate to help them escape the immune 
system. On the other hand, changes in base pair count 
mean the virus has gone through insertions, 
deletions or reassortment, which can affect the 
virus's behavior (such as how easily it spreads or 
how it avoids the immune system). Both sequence 
changes and base pair count changes are important 
for understanding how the virus evolves and adapts 
and can help us track new outbreaks. These 
variations are key for scientists to develop better 
vaccines and treatments. 
The Influenza virus is an RNA virus, but the genetic 
codes obtained from NCBI are typically in the form of 
cDNA, which is derived from the RNA of the virus. 
This is common practice in genomics because DNA is 
more stable and easier to manipulate than RNA. 
Moreover, the genetic data is often provided in .fasta 
format, which can be read into Python using the 
Biopython library. Specifically, the SeqIO.parse() 
function from Biopython allows you to read FASTA 
files and access the sequence data, including the 
sequence ID, description and nucleotide sequences 
for further analysis. 
 
3  Distinct Representation of Codon Sequences 
This section presents various representations of the 
considered genetic codes. While direct sequence 
comparison helps identify specific genetic 
differences, focusing on and developing different 
representation methods like matrix representation, 
𝒞𝒢ℛ and DNA walks helps to reveal larger patterns, 
structural changes and evolutionary trends. These 
techniques simplify complex data and make it easier 
to spot mutations, hidden features and changes in the 

virus. They provide a broader view of the genome, 
speeding up analysis and helping researchers better 
understand viral behavior and evolution. As a result, 
not only biologists but also people with basic 
computer skills can analyze and explore the genetic 
sequences more easily. 
 
3.1 Matrix Representation 
Matrix representations of DNA sequences provide an 
effective way to visualize and analyze genetic data in 
a structured format. In this study, we utilize two 
types of matrices: the Difference Matrix and the 
Indicator Matrix, which enable efficient sequence 
comparison and the identification of key patterns. 
 
3.1.1 Difference Matrix 
To analyze DNA sequences effectively, they are often 
represented as numerical values or simplified 
mappings depending on the context [7]. These 
representations help to translate complex genetic 
data into forms that are easier to visualize and 
analyze computationally. 
We can the DNA sequence as a function 𝑓(𝑥, 𝑦) , 
where four colors are used to visually represent the 
nucleotides: Red for Adenine (A), Blue for Thymine 
(T), Green for Guanine (G) and Yellow for Cytosine 
(C). This color-coding method is particularly useful 
for visualizing genetic sequences, allowing for a clear 
distinction between the four bases. By assigning a 
distinct color to each nucleotide, the sequence is 
transformed into a visually comprehensible format. 
This color-coded representation enhances our ability 
to quickly detect patterns, such as repetitive 
sequences or GC content, which may be of biological 
significance. It also aids in the identification of 
structural features, such as palindromes, which are 
crucial in understanding processes like DNA 
replication and gene regulation. 
However, we can identify the variation of sequences 
using color-coded images, the difference matrix 
quick the process. When comparing two color-coded 
DNA sequences, the difference matrix visually 
represents where the sequences match or differ 
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based on color. Identical colors (value 0) are 
represented by a black square, indicating that the 
colors at corresponding positions in both sequences 
are the same. Different colors (value 1) are 
represented by a white square, highlighting positions 
where the colors differ. Hence, the difference matrix 
is represented by the binary color. This visual 
representation is particularly useful for quickly 
identifying positions where the two sequences are 
identical or different, based on the colors in the 
image. The presence of white squares indicates the 
differences between the sequences, while black 
squares show where they match. 
Here, we use the python function 
plot_dna_sequence_in_grid(dna_sequence) to create 
the color-coded image of a codon sequence and 
generate_difference_matrix (seq1, seq2) compares 
two codon sequences, which generate a difference 
matrix in binary color. 
 
3.1.2 Indicator Matrix 
The Indicator Matrix serves as an important 
analytical tool, making complex DNA sequence data 
more understandable. To explore the mathematical 
representation of a DNA sequence, consider the set 
𝒳 representing the four nucleotides of DNA, i.e., 

𝒳 = {𝐴, 𝑇, 𝐶, 𝐺} 
The DNA sequence can be represented as a finite 
symbolic sequence, denoted by 𝒮 and defined as: 

𝒮 = {𝑥𝑘}𝑘=1,2,3,...,𝑁 

where 𝑥𝑘  represents the nucleotide at position 𝑘 
and 𝑥𝑘 ∈ 𝒳 . Thus, the sequence 𝒮  is a set of 𝑁 
values, each corresponding to a specific nucleotide in 
the sequence: 

𝑥𝑘 = (𝑘, 𝑥),    𝑥 ∈ 𝒳 
The DNA sequence can be represented using an 
indicator matrix, which is a sparse symmetric matrix 
with binary values {0,1} . This matrix, 𝑀𝑘,𝑙 , is 

defined as a function: 𝑀: 𝒮 × 𝒮 → {0,1} such that 

𝑀𝑘,𝑙 = {
1 if𝑥𝑘 = 𝑥𝑙

0 if𝑥𝑘 ≠ 𝑥𝑙
 

This indicator matrix 𝑀𝑘,𝑙  is a square matrix with 

dimensions 𝑁 × 𝑁. An example of this matrix is as 
follows: . . . . . . . . .

. . . . . . . . .

. . . . . . . . .
𝐴 1 0 0 0 1 . . .
𝑇 0 0 0 1 0 . . .
𝐶 0 0 1 0 0 . . .
𝐺 0 1 0 0 0 . . .
𝐴 1 0 0 0 1 . . .
𝑀𝑘,𝑙 𝐴 𝐺 𝐶 𝑇 𝐴 . . .

 

This traditional method enables the visual 
representation of the sequence in a 2D space, where 
a black dot is placed when 𝑀𝑘,𝑙 = 1  and a white 

spot when 𝑀𝑘,𝑙 = 0. 

DNA sequences exhibit two primary types of base 
pairings: complementary base pairs (A-T, G-C) and 

non-complementary pairings (A-C, G-T, etc.). To 
capture this distinction, we modify the traditional 
𝑀𝑘,𝑙  function to better reflect these different pairing 

types. The modified function, denoted as 𝑀𝑘,𝑙
𝑚 , is 

defined as: 𝑀𝑚: 𝒮 × 𝒮 → {0,1,2,3} such that 
 

𝑀𝑘,𝑙
𝑚 = {

1 if𝑥𝑘 = 𝑥𝑙

0 if𝑥𝑘 ≠ 𝑥𝑙and{𝑥𝑘 , 𝑥𝑙} ∈ {𝐺, 𝑇}or{𝐴, 𝐶}

2 if𝑥𝑘 ≠ 𝑥𝑙and{𝑥𝑘 , 𝑥𝑙} ∈ {𝑇, 𝐶}or{𝐴, 𝐺}

3 if𝑥𝑘 ≠ 𝑥𝑙and{𝑥𝑘 , 𝑥𝑙} ∈ {𝐶, 𝐺}or{𝐴, 𝑇}

 

 
Thus, 𝑀𝑘,𝑙

𝑚  is a matrix that can take the values 0, 1, 

2, or 3. An example of this matrix is: . . . . . . . . .
. . . . . . . . .
. . . . . . . . .
𝐴 1 2 0 3 1 . . .
𝑇 3 0 2 1 3 . . .
𝐶 0 3 1 2 0 . . .
𝐺 2 1 3 0 2 . . .
𝐴 1 2 0 3 1 . . .
𝑀𝑘,𝑙 𝐴 𝐺 𝐶 𝑇 𝐴 . . .

 

To further analyze the nucleotide pairings, this 
matrix can be decomposed into four binary matrices, 

𝑀𝑘,𝑙
𝑚0 , 𝑀𝑘,𝑙

𝑚1 , 𝑀𝑘,𝑙
𝑚2 , 𝑀𝑘,𝑙

𝑚3 , as follows: 

 

𝑀𝑘,𝑙
𝑚0 = {

1 if𝑥𝑘 = 𝑥𝑙

0 otherwise
 

 

𝑀𝑘,𝑙
𝑚1 = {

1 if𝑥𝑘 ≠ 𝑥𝑙and{𝑥𝑘 , 𝑥𝑙} ∈ {𝐺, 𝑇}or{𝐴, 𝐶}
0 otherwise

 

𝑀𝑘,𝑙
𝑚2 = {

1 if𝑥𝑘 ≠ 𝑥𝑙and{𝑥𝑘 , 𝑥𝑙} ∈ {𝑇, 𝐶}or{𝐴, 𝐺}
0 otherwise

 

𝑀𝑘,𝑙
𝑚3 = {

1 if𝑥𝑘 ≠ 𝑥𝑙and{𝑥𝑘 , 𝑥𝑙} ∈ {𝐶, 𝐺}or{𝐴, 𝑇}
0 otherwise

 

 
By decomposing the indicator matrix into four 
distinct binary matrices, each reveals a different 
aspect of nucleotide pairings, providing a more 
detailed representation of the DNA sequence. This 
decomposition aids in advanced analyses, such as 
distinguishing complementary base pairs (A-T, G-C) 
from mismatches, highlighting conserved regions 
and areas of divergence for more efficient sequence 
alignment and pinpointing recurring patterns for 
motif detection. Overall, this approach enhances the 
depth and precision of DNA sequence analysis, 
making it a valuable tool for mutation detection, 
sequence alignment and genome-wide studies. 
The indicator matrix allows for a more precise 
nucleotide-level comparisons, which the color-coded 
image cannot provide. While the color-coded image 
offers a quick visual representation, making it easy to 
spot patterns, similarities and differences at a glance, 
it lacks the detailed information necessary for tasks 
like sequence alignment and mutation detection. 
Thus, the indicator matrix provides the precision 
required for these in-depth analyses. 
The function create_indicator_matrix(sequence) is 
used to generate the four binary indicator matrices 
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based on the given sequence. These matrices are 
created by comparing nucleotide pairs in the 

sequence and applying specific rules: 𝑀𝑘,𝑙
𝑚0  is filled 

with 1's where the nucleotides are identical, 𝑀𝑘,𝑙
𝑚1  is 

for pairs in the sets {G, T} or {A, C}, 𝑀𝑘,𝑙
𝑚2  is for pairs 

in {T, C} or {A, G} and 𝑀𝑘,𝑙
𝑚3  is for pairs in {C, G} or 

{A, T}. 
 
3.2  Chaos Game Representation (𝓒𝓖𝓡) 
The DNA sequence can be transformed into a two-
dimensional real-valued representation using 𝒞𝒢ℛ 
[6], which helps preserve the statistical properties of 
the sequence while providing insight into both local 
and global patterns. In 𝒞𝒢ℛ, each nucleotide in the 
sequence is mapped to a specific point in a 2D space, 
leading to a unique representation for every DNA 
sequence. Let’s consider a DNA sequence 
represented as: 

𝑆𝑒𝑞 = {𝑐1, 𝑐2, … , 𝑐𝑛 , … , 𝑐𝑁} 
where 𝑐𝑛  is the 𝑛𝑡ℎ  nucleotide in the sequence, 
which is mapped to the coordinates (𝑐𝑥(𝑛), 𝑐𝑦(𝑛)). 

The values of 𝑐𝑥(𝑛) and 𝑐𝑦(𝑛) are defined as: 

𝑐𝑥(𝑛) = {

1 if𝑐𝑛 = 𝐴
−1 if𝑐𝑛 = 𝑇
−1 if𝑐𝑛 = 𝐶
1 if𝑐𝑛 = 𝐺

 

and 

𝑐𝑦(𝑛) = {

1 if𝑐𝑛 = 𝐴
1 if𝑐𝑛 = 𝑇
−1 if𝑐𝑛 = 𝐶
−1 if𝑐𝑛 = 𝐺

 

By using these mappings, the sequence is 
transformed into 𝒞𝒢ℛ coordinates (𝐶𝑥(𝑛), 𝐶𝑦(𝑛)), 

which can be calculated recursively starting from the 
initial point (𝐶𝑥(0), 𝐶𝑦(0)) = (0,0) . The recursion 

equations are as follows: 

𝐶𝑥(𝑛) =
1

2
[𝑐𝑥(𝑛) + 𝐶𝑥(𝑛 − 1)]    𝑛 = 1,2,3, … , 𝑁 

 

𝐶𝑦(𝑛) =
1

2
[𝑐𝑦(𝑛) + 𝐶𝑦(𝑛 − 1)]    𝑛 = 1,2,3, … , 𝑁 

The frequencies of genetic motifs, or 𝑛-mers, can be 
determined by partitioning the 𝒞𝒢ℛ  space into 
grids and counting the occurrences of points in each 
sub-region. By splitting the 𝒞𝒢ℛ  space into four 
quadrants, the top-right quadrant will represent 
sequences terminating in G. This method allows for 
the counting of bases, such as G and extends to 
counting other 𝑛-mers by recursively dividing the 
quadrants into smaller sectors that correspond to 
subsequences, such as GG, TG, AG and CG. This 
process continues iteratively, yielding counts for 𝑛-
mers of increasing length. Figure 2 illustrates the 
relationship between 𝑛-mers and the sub-squares 
of the Chaos Game Representation. 
 

 
 

Figure 2: Relevance between 𝒏-mer and the 
sub-squares of CGR 

 
An intriguing aspect of 𝒞𝒢ℛ  is that visual 
representations of different sections of a genome 
exhibit a similar structure to that of the entire 
genome. Consequently, analyzing parts of a genome 
can still yield a reliable genomic signature. This 
property is especially useful when working with 
incomplete genome data, allowing for comparisons 
between non-homologous sequences. 
The use of 𝒞𝒢ℛ is particularly beneficial in various 
bioinformatics applications, such as motif discovery, 
sequence comparison and the study of genomic 
structures. It enables researchers to identify 
recurring patterns in DNA sequences and compare 
different genomes efficiently. The 𝒞𝒢ℛ ’s ability to 
handle both complete and partial genomic data 
makes it an invaluable tool for analyzing large-scale 
genomic datasets, detecting mutations and 
identifying functional elements across different 
organisms. 
Here, the function generate_cgr(sequence) generates 
the 𝒞𝒢ℛ  of a given sequence. The sequence is 
mapped to a series of points in a 2D space based on 
the coordinates assigned to each nucleotide: A maps 
to (1, 1), T maps to (-1, 1), G maps to (1, -1) and C 
maps to (-1, -1). Starting at the center of the plot, each 
subsequent nucleotide generates a point that is the 
midpoint between the current point and the corner 
corresponding to the nucleotide's coordinates. The 
function count_n_mers(sequence, n) is used to count 
the occurrences of n-mers (subsequences of length 
n) in the given sequence. 
 
3.3 DNA Walk 
The development of chaos in genetic sequences can 
be explored using DNA walks, which visually 
represent genomic sequences where the steps 
correspond to the nucleotides in the DNA. This 
technique is used to assess the complexity of genes 
and the nucleotide variation within them. DNA walks 
serve as a symbolic method for expressing the 
contextual information of a DNA sequence as a graph, 
originating from the digital representation of DNA 
sequences [8]. 
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A DNA walk is essentially the cumulative progression 
given by the sum ∑ 𝑋𝑛 , 𝑛 = 1,2, . . . , 𝑁 − 1 , where 
𝑋𝑛 ∈ {0,1,2,3}  represents the direction taken by 

each nucleotide. The DNA walk is a cumulative sum 
{𝑋0, 𝑋0 + 𝑋1, … , ∑𝑁−1

𝑘=0 𝑋𝑘} on the DNA string [1]. 

From the digital interpretation of a DNA sequence, we define the following sums: 

𝑎𝑛 = ∑

𝑛−1

𝑘=1

𝑢(𝐴, 𝑥𝑘),    𝑡𝑛 = ∑

𝑛−1

𝑘=1

𝑢(𝑇, 𝑥𝑘),    𝑐𝑛 = ∑

𝑛−1

𝑘=1

𝑢(𝐶, 𝑥𝑘),    𝑔𝑛 = ∑

𝑛−1

𝑘=1

𝑢(𝐺, 𝑥𝑘) 

These sums allow us to plot the DNA walk using the following coordinates: 
𝑊𝑛 = sin(𝑎𝑛

2) − sin(𝑔𝑛
2),    𝑉𝑛 = sin(𝑡𝑛

2) − sin(𝑐𝑛
2) 

 
Thus, a DNA walk forms a planar trajectory derived 
from the directional representation of the DNA 
sequence. The nucleotides A, T, C and G are encoded 
with the directions: west, east, south and north, 
respectively, creating a visual path that reflects the 
structure and variation within the sequence. 
DNA walks are unique in that they provide a 
geometric representation of nucleotide sequences, 
where each step’s direction is determined by the 
corresponding nucleotide. This visualization method 
is powerful in revealing patterns of sequence 
complexity and in detecting structural variations, 
such as mutations, repeats, or local variations in the 
genome. Additionally, DNA walks are particularly 
useful in understanding sequence periodicity and 
can be employed to study genetic sequences from 
various organisms, offering a visual comparison of 
sequence structures and their evolutionary 
dynamics. 
In conclusion, DNA walks provide a distinct and 
informative method for exploring genomic 
sequences. Their ability to capture both the local and 
global characteristics of DNA makes them a valuable 
tool for genetic analysis, motif detection and 
sequence comparison. The use of directional 
encoding and cumulative summing allows for 
efficient visualization and analysis of nucleotide 
variations, which is especially useful in genomic 
studies where understanding sequence complexity 
and structure is critical. 
The function compute_dna_walk(dna_sequence, 
step_size) generates a 2D DNA walk by mapping each 
nucleotide to a directional movement in the plane. 
The nucleotides A, C, G and T are mapped to North, 
South, East and West, respectively, based on the 
function encode_nucleotide(nucleotide, step_size). 
Starting at the origin (0, 0), the walk is constructed 
by iteratively applying the corresponding directional 
movement for each nucleotide in the sequence, 
resulting in two lists of coordinates (walk_x and 
walk_y). The walk is then visualized using the 
plot_dna_walk(walk_x, walk_y) function, which plots 
the walk on a 2D grid. 
 
4  Exploring the Distinct Representations using 
Chaotic Approach 
Most genetic code representations appear visually 
similar due to the same base pair count and very 
minute changes in their sequence. However, these 

subtle differences can reflect significant biological 
variations. To address the confusion caused by these 
similarities, we use a valuable parameter known as 
the fractal dimension. 
Fractal dimension is a mathematical concept used to 
quantify the complexity of a structure or pattern. In 
the context of genetic sequences, fractal dimension 
helps capture the self-similar and non-linear 
patterns in the sequence, even when the changes are 
too small to be easily detected through direct 
comparison. In this case, fractal dimension allows us 
to distinguish between different representations of 
sequences that might appear similar at first glance 
but have underlying biological differences. There are 
various methods to calculate fractal dimension, but 
we selected the most suitable procedure based on 
the nature of the representation. 
Typically, researchers use Java-based ImageJ or 
MATLAB to compute fractal dimensions. While 
MATLAB can create various representations of codon 
sequences, Python is often a better choice due to its 
flexibility, powerful libraries (e.g., NumPy, SciPy, 
Biopython) and memory efficiency, particularly 
when handling large genomic datasets. In contrast, 
ImageJ is designed for calculating fractal dimensions 
but is limited to working with pre-existing images. 
Python, however, enables both the creation of 
sequence representations and the calculation of 
fractal dimensions in a more integrated and efficient 
manner. 
 
Definition 4.1 The fractal dimension of the difference 
matrix and 𝒞𝒢ℛ  is calculated using the traditional 
box-counting method. In this method, the given object 
is covered with small boxes of size 𝛿. As the box size 
changes, the number of boxes 𝒩(𝛿)  required to 
cover the object varies. The fractal dimension can be 
calculated using the following expression: 

𝒟𝐵 = lim
𝛿→0

−
log𝒩(𝛿)

log𝛿
 

This formula calculates the fractal dimension by 
analyzing how the number of boxes increases as the 
size of the boxes decreases, providing a measure of 
the object's space filling property. Hence, this 
method is particularly suitable for analyzing space-
filling images, such as the binary images of the 𝒞𝒢ℛ 
and the difference matrix. These images are 
composed of black and white pixels, where the black 
pixels represent a certain structure or feature and 
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the white pixels represent the background or 
absence of that feature. In python, the function 
box_counting(binary_image, epsilon_values) 
performs the box-counting process. 
 
Definition 4.2 In the indicator matrix, the statistical 
properties of the nucleotide distribution remain 
consistent over time, suggesting a fractal pattern. The 
fractal dimension 𝒟𝐼  quantifies this self-similar 
distribution and can be calculated using the following 
formula: 

𝒟𝐼 =
1

𝑁
∑

𝑁

𝑛=2

log𝑠(𝑛)

log𝑛
 

where, 𝑁  is the size of the matrix, 𝑛  is the 
dimension of the 𝑛 × 𝑛  sub-matrices (minors) 
randomly selected from the 𝑁 × 𝑁  matrix and 
𝑠(𝑛)  is the average number of 1's in these 𝑛 × 𝑛 
minors. 
 
This formula measures how the occurrence of 
patterns (represented by 1's) in sub-matrices scales 
with size, providing a measure of the complexity or 
self-similarity of the nucleotide distribution. A higher 
fractal dimension indicates a more complex and 
irregular pattern, while a lower dimension suggests 
a simpler structure. 
The function calculate_pn(matrix, N, step_size) 
computes the average number of 1's in 𝑛 × 𝑛 
minors of the given indicator matrix. It iterates over 
different sizes 𝑛  (from 2 to 𝑁 ) with a specified 
step size, counts the 1's in each minor and calculates 
the average. 
 
Definition 4.3 Local connected fractal dimension 
quantifies the connectivity of DNA walks. This measure 
is computed for each pixel of the given image and helps 
to highlight the irregularities of heterogeneous 
geometrical objects at a local level. It can be calculated 
using the following equation: 

𝒟𝐿 = lim
𝛿→0

−
log𝑁𝛿

log𝛿
 

where, 𝑁𝛿  is the average number of pixels per box 

for any box size 𝛿. 
 
This formula computes the fractal dimension by 
analyzing the change in the average number of pixels 
per box as the box size 𝛿  decreases, giving a 
measure of the local geometric complexity. The 
function local_fractal_dimension is used to estimate 
the fractal dimension of a DNA walk (generated by 
compute_dna_walk) using the box-counting method. 
It divides the 2D space into boxes of varying sizes (𝜖) 
and counts the number of distinct boxes needed to 
cover the points of the DNA walk. 
The local connected fractal dimension is more 
suitable for DNA walks because it focuses on how the 
path scales at smaller levels. It considers how the 
walk stays connected and evolves over time. This is 
important for understanding how DNA sequences 
change in space and time. On the other hand, box-
counting works better for static objects and doesn't 
capture the dynamic and connected nature of DNA 
walks. 
 
5  Results and Discussion 
The various representations discussed in this paper 
already introduced, but they have not been 
regularized due to the lack of standardized software 
and further analysis. Java-based software tools such 
as Graph DNA and C-GREx are available; however, 
these are currently not functioning properly and 
cannot be customized according to specific needs. 
For the indicator matrix, we were unable to find any 
specialized software. Some attempts have been made 
using MATLAB, with users posting their work on 
platforms like MathWorks or the MATLAB GUI page. 
Unfortunately, we found these implementations 
difficult to run. Therefore, we have undertaken the 
task of consolidating these tools and approaches into 
a Python-based solution using the Biopython 
environment. The source codes used in this work are 
provided in the appendix and the various 
representations generated through these codes are 
shown in the following figures (which display 
representations for a sample sequence only). 

 
 

 
(a) 𝐴1 

 
(b) 𝐴2 
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(c) 𝐴3 

 
Figure  3: Color-coded codon sequence of Segment 1 

 
The color-coded image of segment 1 for all three 
viruses is presented in Figure 3. Through direct 
visual inspection, the differences between 3a and 3b 
can be easily identified, with one such difference 
highlighted in a circled area as an example. However, 

the differences between 3b and 3c are not 
immediately apparent at first glance and require a 
detailed comparison of each grid. In this case, the 
difference matrix presented in Figure 4 helps to 
identify these subtle differences more effectively. 

 

 
(a) Difference between 𝐴1 and 𝐴2 

 
(b) Difference between 𝐴1 and 𝐴3 

 

 
(c) Difference between 𝐴2 and 𝐴3 

 
Figure  4: The difference matrix derived from the color-coded representation of Segment 1 

 
However, the difference matrix provides a quick 
visual way to identify differences, while the fractal 
dimension of the difference matrix offers a numeric 
representation. Since the box dimension is based on 
the space-filling property, it treats the white grid as 
an object in a black space and measures how much 
the white grid fills the black space. This means that 
as the difference between sequences increases, the 

fractal dimension increases and conversely, as the 
differences decrease, the fractal dimension also 
decreases. From the Table 2, we can observe that the 
differences between A 1A 2 and A 1A 3  are greater 
than the difference between A 2A 3. The dimension of 
0 reflect that, the space is not filling with white grids 
(ie., there is no difference between the sequences). 

 
Segment A 𝟏A 𝟐 A 𝟏A 𝟑 A 𝟐A 𝟑 

1 1.45801 1.45752 0.03057 
2 1.50545 1.50585 0.01287 
3 1.47559 1.47609 0.01462 
4 - - 0.00947 
5 1.39537 1.39658 0.00960 
6 1.47753 1.47753 0.00000 
7 1.17443 1.16543 0.15493 
8 - - 0.00000 

 
Table  2: Fractal dimension of difference matrix 
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Note that the difference matrix is created when the 
dimensions of the color-coded images are equal. 
However, for segments 4 and 8, the dimensions of the 
color-coded images do not match, so it is not possible 
to compute the difference matrix for these segments. 
The indicator matrix representation of a sample 

sequence is shown in Figure 5. The differences 
between the indicator matrices of A 1 and A 2  are 
visually identified and circled. However, the 
difference between the indicator matrices of A 2 and 
A 3 is not easily traceable due to their high similarity 
and minute differences.

 
 

 
(a) 𝑀0 of 𝐴1 

 
(b) 𝑀1 of 𝐴1 

 
(c) 𝑀2 of 𝐴1 

 
(d) 𝑀3 of 𝐴1 

 

 
(a) 𝑀0 of 𝐴2 

 
(b) 𝑀1 of 𝐴2 

 
(c) 𝑀2 of 𝐴2 

 
(d) 𝑀3 of 𝐴2 

 

 
(a) 𝑀0 of 𝐴3 

 
(b) 𝑀1 of 𝐴3 

 
(c) 𝑀2 of 𝐴3 

 
(d) 𝑀3 of 𝐴3 

 
Figure  5: Indicator Matrix representation of Segment 7 

 
To detect the variation more accurately, the fractal 
dimension of the indicator matrix is calculated and 
presented in the Table 3. This dimension is based on 
the presence of 1's and 0's in the sub-matrix, so even 
a single change in a 1 or 0 is reflected in the fractal 
dimension. While the difference matrix fractal 

dimension provides an overall measure of sequence 
differences, the fractal dimension of the indicator 
matrix offers a more detailed analysis, as it evaluates 
changes across four different segments of the 
indicator matrix for a single sequence.

  

Segment Type 𝑴𝟎 𝑴𝟏 𝑴𝟐 𝑴𝟑 
1 A 1 1.878911 1.846561 1.864819 1.857823 

A 2 1.868991 1.823659 1.840250 1.837919 
A 3 1.869147 1.823815 1.840406 1.838075 

2 A 1 1.858182 1.827732 1.838934 1.838192 
A 2 1.866857 1.821525 1.838115 1.835785 
A 3 1.867107 1.821775 1.838365 1.836035 

3 A 1 1.857622 1.825272 1.843530 1.836534 
A 2 1.856416 1.827184 1.843674 1.835791 
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A 3 1.856568 1.827336 1.843826 1.835943 
4 A 1 - - - - 

A 2 1.775760 1.721734 1.739187 1.748605 
A 3 1.777589 1.723563 1.741016 1.750434 

5 A 1 1.611679 1.573359 1.606075 1.576470 
A 2 1.617814 1.568994 1.607246 1.573001 
A 3 1.619734 1.570914 1.609166 1.574921 

6 A 1 1.572089 1.552232 1.558326 1.565157 
A 2 1.573024 1.550717 1.557899 1.566068 
A 3 1.573024 1.550717 1.557899 1.566068 

7 A 1 1.421425 1.412315 1.420521 1.412649 
A 2 1.422638 1.410963 1.419216 1.414084 
A 3 1.422638 1.410963 1.419216 1.414084 

8 A 1 1.425017 1.408589 1.418499 1.414721 
A 2 1.428195 1.405775 1.414920 1.417798 
A 3 1.428195 1.405775 1.414920 1.417798 

 
Table  3: Indicator dimension of indicator matrix 

 
The 𝒞𝒢ℛ and DNA walk representations of a sample segment are presented, with visually identifiable differences 
circled (refer Figures 6 and 7). 
 
 

 
(a) 𝒞𝒢ℛ of 𝐴1 

 
(b) 𝒞𝒢ℛ of 𝐴2 

 
(c) 𝒞𝒢ℛ of 𝐴3 

Figure  6: 𝓒𝓖𝓡 representation of Segment 1 
 

 

 
(a) DNA walk of 𝐴1 

 
(b) DNA walk of 𝐴2 

 
(c) DNA walk of 𝐴3 

 
Figure  7: DNA walk of Segment 7 
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Segment Type CGR DNA Walk 
1 A 1 1.3985 0.8783 

A 2 1.3911 0.8972 
A 3 1.3915 0.8949 

2 A 1 1.3900 0.8511 
A 2 1.3940 0.8387 
A 3 1.3938 0.8453 

3 A 1 1.3800 0.9006 
A 2 1.3820 0.8979 
A 3 1.3821 0.8967 

4 A 1 - - 
A 2 1.3262 0.8437 
A 3 1.3268 0.8375 

5 A 1 1.2888 0.8975 
A 2 1.2950 0.8927 
A 3 1.2953 0.8906 

6 A 1 1.2846 0.8799 
A 2 1.2845 0.8861 
A 3 1.2845 0.8861 

7 A 1 1.1925 0.9186 
A 2 1.1898 0.9371 
A 3 1.1893 0.9245 

8 A 1 1.1492 0.9081 
A 2 1.1524 0.8868 
A 3 1.1524 0.8868 

Table  4: Fractal dimension of 𝓒𝓖𝓡 and DNA walk of the segments 
 
However, to detect the differences more precisely, 
the fractal dimensions are calculated and listed in 
Table 4. From the table, it can be seen that although 
the number of dots in the 𝒞𝒢ℛ  is the same for 
segments with the same base pairs from different 
viruses, their fractal box dimensions differ. This 
indicates that the position of the dots also influences 
the fractal dimension. Similarly, even though the 
number of moves in the DNA walk is the same, the 
local connected fractal dimension changes due to 
variations in the local direction of movement. 
The same dimension for the same sequence in 
different viruses indicates that the sequences are 
exactly identical. Specifically, from Tables 2, 3 and 4, 
we can conclude that segments 6 and 8 of A 2 and A 3 
are identical. From Tables 3 and 4, the fractal 
dimension of different segments of A 2 and A 3 are 
almost closely near compare with A  1 . Thus, the 
codon sequence of various segments of A 2 and A 3 
should be more similar than A 1. 
 
6 Conclusion 
Though this study focused on the codon sequences of 
the Influenza A virus, it integrated three key 
perspectives: the exploration of various codon 
sequence representations, the significance of fractal 
dimension analysis, and the development of Python 
code to conduct these analyses. The different 
representations of codon sequences and their 
corresponding fractal dimensions were unique in 
their own right, each helping to identify differences 

between the sequences. Specifically, the difference 
matrix and DNA walk provided quick visual insights. 
However, subtle changes that could have significant 
biological implications were not always easily 
detectable. In such cases, fractal dimension analysis 
effectively captured these variations. As a result, 
fractal dimension analysis proved to be a more 
precise and reliable method for identifying 
differences in visually similar representations. The 
application of such analytical methods in 
bioinformatics provided a fresh perspective and 
helped bridge the gap in understanding biological 
data, especially for non-biologists. 
Moreover, these types of studies enhance the 
automatic detection of exact viral strains and their 
variants. By employing fractal dimension analysis 
alongside traditional methods, this study improves 
the sensitivity and accuracy of identifying minute 
differences between strains. This is crucial for 
tracking virus mutations and understanding their 
evolutionary patterns. Such advancements in 
bioinformatics enable faster and more reliable viral 
surveillance, facilitating the detection of emerging 
variants and potentially allowing for quicker 
responses to public health threats. 
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Appendix 
 

Segment Type Link 

1 𝐴1 https://www.ncbi.nlm.nih.gov/nuccore/DQ208309.1https://www.ncbi.nlm.nih.go
v/nuccore/DQ208309.1 

𝐴2 https://www.ncbi.nlm.nih.gov/nuccore/CY065759https://www.ncbi.nlm.nih.gov/
nuccore/CY065759 

𝐴3 https://www.ncbi.nlm.nih.gov/nuccore/HM569666https://www.ncbi.nlm.nih.gov
/nuccore/HM569666 

2 𝐴1 https://www.ncbi.nlm.nih.gov/nuccore/DQ208310.1https://www.ncbi.nlm.nih.go
v/nuccore/DQ208310.1 

𝐴2 https://www.ncbi.nlm.nih.gov/nuccore/CY065760https://www.ncbi.nlm.nih.gov/
nuccore/CY065760 

𝐴3 https://www.ncbi.nlm.nih.gov/nuccore/HM569665https://www.ncbi.nlm.nih.gov
/nuccore/HM569665 

3 𝐴1 https://www.ncbi.nlm.nih.gov/nuccore/DQ208311.2https://www.ncbi.nlm.nih.go
v/nuccore/DQ208311.2 

𝐴2 https://www.ncbi.nlm.nih.gov/nuccore/CY065761https://www.ncbi.nlm.nih.gov/
nuccore/CY065761 

𝐴3 https://www.ncbi.nlm.nih.gov/nuccore/HM569664https://www.ncbi.nlm.nih.gov
/nuccore/HM569664 

4 𝐴1 https://www.ncbi.nlm.nih.gov/nuccore/AF116575.1https://www.ncbi.nlm.nih.go
v/nuccore/AF116575.1 

𝐴2 https://www.ncbi.nlm.nih.gov/nuccore/CY065762https://www.ncbi.nlm.nih.gov/
nuccore/CY065762 

𝐴3 https://www.ncbi.nlm.nih.gov/nuccore/HM569659https://www.ncbi.nlm.nih.gov
/nuccore/HM569659 

5 𝐴1 https://www.ncbi.nlm.nih.gov/nuccore/AY744935.1https://www.ncbi.nlm.nih.go
v/nuccore/AY744935.1 

𝐴2 https://www.ncbi.nlm.nih.gov/nuccore/CY065763https://www.ncbi.nlm.nih.gov/
nuccore/CY065763 

𝐴3 https://www.ncbi.nlm.nih.gov/nuccore/HM569662https://www.ncbi.nlm.nih.gov
/nuccore/HM569662 

6 𝐴1 https://www.ncbi.nlm.nih.gov/nuccore/AF250356.2https://www.ncbi.nlm.nih.go
v/nuccore/AF250356.2 

𝐴2 https://www.ncbi.nlm.nih.gov/nuccore/CY065764https://www.ncbi.nlm.nih.gov/
nuccore/CY065764 

𝐴3 https://www.ncbi.nlm.nih.gov/nuccore/HM569661https://www.ncbi.nlm.nih.gov
/nuccore/HM569661 
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https://www.ncbi.nlm.nih.gov/nuccore/CY065763https:/www.ncbi.nlm.nih.gov/nuccore/CY065763
https://www.ncbi.nlm.nih.gov/nuccore/CY065763https:/www.ncbi.nlm.nih.gov/nuccore/CY065763
https://www.ncbi.nlm.nih.gov/nuccore/HM569662https:/www.ncbi.nlm.nih.gov/nuccore/HM569662
https://www.ncbi.nlm.nih.gov/nuccore/HM569662https:/www.ncbi.nlm.nih.gov/nuccore/HM569662
https://www.ncbi.nlm.nih.gov/nuccore/AF250356.2https:/www.ncbi.nlm.nih.gov/nuccore/AF250356.2
https://www.ncbi.nlm.nih.gov/nuccore/AF250356.2https:/www.ncbi.nlm.nih.gov/nuccore/AF250356.2
https://www.ncbi.nlm.nih.gov/nuccore/CY065764https:/www.ncbi.nlm.nih.gov/nuccore/CY065764
https://www.ncbi.nlm.nih.gov/nuccore/CY065764https:/www.ncbi.nlm.nih.gov/nuccore/CY065764
https://www.ncbi.nlm.nih.gov/nuccore/HM569661https:/www.ncbi.nlm.nih.gov/nuccore/HM569661
https://www.ncbi.nlm.nih.gov/nuccore/HM569661https:/www.ncbi.nlm.nih.gov/nuccore/HM569661
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7 𝐴1 https://www.ncbi.nlm.nih.gov/nuccore/AY130766.1https://www.ncbi.nlm.nih.go
v/nuccore/AY130766.1 

𝐴2 https://www.ncbi.nlm.nih.gov/nuccore/CY065765https://www.ncbi.nlm.nih.gov/
nuccore/CY065765 

𝐴3 https://www.ncbi.nlm.nih.gov/nuccore/HM569660https://www.ncbi.nlm.nih.gov
/nuccore/HM569660 

8 𝐴1 https://www.ncbi.nlm.nih.gov/nuccore/AF333238.1https://www.ncbi.nlm.nih.go
v/nuccore/AF333238.1 

𝐴2 https://www.ncbi.nlm.nih.gov/nuccore/CY065766https://www.ncbi.nlm.nih.gov/
nuccore/CY065766 

𝐴3 https://www.ncbi.nlm.nih.gov/nuccore/HM569663https://www.ncbi.nlm.nih.gov
/nuccore/HM569663 

 
Table  5: A detailed link of the experimented NCBI nucleotide sequence.  

 
You can get all the Python code used in this work in the RAR file. You can download the RAR file from this 
https://drive.google.com/file/d/1YuF7rrBDqMfXRwqTVGZD_NkLWSQkDiz7/view?usp=sharing 
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https://www.ncbi.nlm.nih.gov/nuccore/AY130766.1https:/www.ncbi.nlm.nih.gov/nuccore/AY130766.1
https://www.ncbi.nlm.nih.gov/nuccore/AY130766.1https:/www.ncbi.nlm.nih.gov/nuccore/AY130766.1
https://www.ncbi.nlm.nih.gov/nuccore/CY065765https:/www.ncbi.nlm.nih.gov/nuccore/CY065765
https://www.ncbi.nlm.nih.gov/nuccore/CY065765https:/www.ncbi.nlm.nih.gov/nuccore/CY065765
https://www.ncbi.nlm.nih.gov/nuccore/HM569660https:/www.ncbi.nlm.nih.gov/nuccore/HM569660
https://www.ncbi.nlm.nih.gov/nuccore/HM569660https:/www.ncbi.nlm.nih.gov/nuccore/HM569660
https://www.ncbi.nlm.nih.gov/nuccore/AF333238.1https:/www.ncbi.nlm.nih.gov/nuccore/AF333238.1
https://www.ncbi.nlm.nih.gov/nuccore/AF333238.1https:/www.ncbi.nlm.nih.gov/nuccore/AF333238.1
https://www.ncbi.nlm.nih.gov/nuccore/CY065766https:/www.ncbi.nlm.nih.gov/nuccore/CY065766
https://www.ncbi.nlm.nih.gov/nuccore/CY065766https:/www.ncbi.nlm.nih.gov/nuccore/CY065766
https://www.ncbi.nlm.nih.gov/nuccore/HM569663https:/www.ncbi.nlm.nih.gov/nuccore/HM569663
https://www.ncbi.nlm.nih.gov/nuccore/HM569663https:/www.ncbi.nlm.nih.gov/nuccore/HM569663
https://drive.google.com/file/d/1YuF7rrBDqMfXRwqTVGZD_NkLWSQkDiz7/view?usp=sharing

