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Abstract: Excessive use of pesticides and fertilizers in agriculture has led to issues such as soil erosion, water 
pollution, low microbial activity, and rising production costs [3]. This is crucial for sustainable agriculture, as it 
determines crop growth, nutrient balance, and environmental protection. However, standard methods of soil 
testing include laboratory tests; hence, they are time-consuming, costly, and not readily available to farmers. Such 
issues can cause delays in decision making, which leads to inefficient fertilizer use and long-term soil degradation. 
To address these issues, an AI-based Soil Fertility Prediction System was designed. The system uses data from Soil 
Health Cards (SHC), current weather data, and leaf colour chart (LCC) analysis to make timely and accurate 
recommendations. The system uses LSTM, a deep learning algorithm, to predict soil parameters, such as pH, 
nitrogen, phosphorus, and potassium, and weather parameters [8] such as temperature, humidity, rainfall, and 
wind speed. EfficientNetB0, a light deep-learning model, considers leaf images captured by farmers to detect 
nitrogen deficiency using LCC-based classification. [2] Both models are merged using a weighted average method, 
which gives a Soil Fertility Score (SFS) representing soil health and optimal fertilizer requirement. According to 
this score, farmers provide detailed instructions on how many nutrients are to be utilized. This prevents the 
overuse of chemicals and allows crops to grow well. The system is web deployable, thus providing easy access to 
farming communities. With computer vision and deep learning, this method allows for better decisions, minimizes 
soil damage, and allows sustainable farming.  
 
Keywords: Soil Fertility Prediction, Fertilizer Optimization, Hybrid AI Model, Deep Learning in Agriculture, Soil 
Nutrient Analysis, Nutrient Deficiency Detection 20]   
 
1.0 INTRODUCTION  
Recent farming practices involve the excessive 
application of fertilizers and pesticides, which has 
led to low-quality soil, reduced productivity, and soil 
pollution for farmers. The amount and type of 
fertilizer used is usually a matter of guesswork or 
one of postponing laboratory analysis, which can 
lead to wasteful use of nutrients and soil degradation 
over the long term. Conventional soil analysis 
techniques involve laboratory testing of chemical 
attributes, such as pH, nitrogen (N), phosphorus (P), 
and potassium (K). While precise, these processes 
take time and money, and are not within the reach of 
every farming community, [22] particularly small 
farmers in rural areas. Consequently, decision-
making takes a hit for the sake of timeliness, affecting 
crop productivity and soil viability. To address these 
challenges, artificial intelligence (AI) and deep 
learning have been proposed as saviour solutions 
[15]. In this study, we present a hybrid artificial 
intelligence (AI) model for soil fertility prediction 
and fertilizer optimization. The model is inspired by 
two robust methods: EfficientNetB0, which is used to 

scan leaf colour images to determine nutrient 
deficiencies according to the leaf colour chart (LCC) 
criteria, and Long Short-Term Memory (LSTM) 
networks, which are used to scan time-series data on 
Soil Health Cards (SHC) and prevailing weather 
conditions. This hybrid approach ensures an 
accurate, scalable, and inexpensive solution for 
precision agriculture, particularly for smallholder 
farmers. Classic agricultural prediction models tend 
to be based on past weather patterns and fixed soil 
conditions. These methods fail to keep pace with the 
changing, highly variable nature of climate change 
[24], and thus fail to provide a good fit when used in 
real-time predictions of soil fertility or fertilizer 
application optimization. To meet these challenges, 
current research is trending towards the use of deep 
learning-based methods, which are better suited to 
picking up both spatial and temporal patterns within 
complex agricultural datasets. This hybrid 
architecture, referred to in our project as LLC Net 
(Leaf and Land Condition Network), fuses both 
spatial and temporal information to calculate a 
fertility score [9], which guides fertilizer 
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recommendations. By merging an Efficient Net and 
LSTM, the model ensures both visual and data-driven 
validation of soil conditions, thereby improving the 
accuracy, flexibility, and scalability of traditional 
systems.  
 
1.1 RELATED WORKS   
The purpose of the literature review of crop yield 
forecasting is to understand and synthesize a vast 
amount of information in this field, which falls under 
the field of agricultural research. This broad 
overview of historical research, methodology, and 
results in agricultural yield forecasting research aims 
to fulfil a number of primary functions. First, through 
the aggregation of current knowledge in the field of 
agricultural yield forecasting, the literature review 
sets the background from which to move forward. 
Subsequently, it places into context the various 
variables and conditions surrounding crop yields, 
emphasizing the characteristics of the agricultural 
climate. Contextualization is important so that 
researchers and readers can better appreciate the 
conditions under which new forecast models are 
being formulated and calibrated. In addition, the 
literature review plays a significant role in putting 
into perspective gaps, weaknesses, and issues in 
current research. By critically assessing previous 
findings and methodologies, researchers can 
establish where there is a potential for enhancement. 
This makes agricultural science, in general, more 
robust, but also aids in enhancing predictive models. 
This work employed LSTM time-series analysis and 
mentioned the use of deep learning models. The 
LSTM algorithm surpassed the RNN method in terms 
of accuracy, achieving an accuracy of 93%. Srinivas 
[8] suggested a project to estimate agricultural 
output based on factors such as field area, soil 
moisture content, temperature, and humidity.  
The Random Forest algorithm was effective for 
predicting crop productivity. Recommending the 
appropriate fertilizer ratio can enhance crop 
productivity.[10] The machine learning method is 
used for agricultural yield prediction, assisting 
farmers in selecting the correct crops and applying 
the correct amount of fertilizer. B.G. Chaitra, B.M. 
Sagar, N.K. Cauvery. Padmashree [3] focused on the 
significance of deep learning in forecasting crop 
productivity and evaluating its performance using 
different machine learning methods. It also 
addresses the application of three algorithms: 
(DNN), Random Forest (RF), and XGBoost (extreme 
gradient boosting). Among them is the Deep Neural 
Network, to accurately predict crop yield Deep 
Neural Network (DNN) achieved the highest crop 
yield prediction accuracy, 96%. Random Forest (RF) 
accuracy: 92.9%- 93.3% accuracy rate for Extreme 
Gradient Boosting (XGBoost) and 96% accuracy for 
Deep Neural Networks (DNNs). Pardeep Kaur, Preeti 

Singh, Charu Madhu, Nidhi Garg, the current study 
discusses the prediction of wheat yield based on a 
CNN-LSTM model. Deep learning model CNN-LSTM 
for predicting wheat yield CNN-LSTM model is better 
than existing deep learning Predictive models based 
on deep learning are suitable.[6] Zheng Li, Ruosi Xu, 
Xiaoru Luo, Xin Cao Used an improved CNN structure 
and BiLSTM network, The proposed hybrid model 
boosts the precision of wind power prediction.[9] 
The hybrid model proposed in this study is better in 
terms of predictions. Deep learning, signal 
decomposition, and data processing were integrated 
into the wind-power prediction model. Malika 
Kulyal, Parul Saxena, provides for the use of CNN and 
the DNN, both Deep Learning algorithms, Crop 
prediction of yield involves supervised machine 
learning techniques such as Random Forest. Deep 
learning techniques, such as CNN and DNN, have also 
been applied. A machine learning algorithm was 
utilized to forecast crop yields. Typically, deep 
learning methods and random forests are employed. 
Research is conducted on machine learning 
techniques to predict crop productivity.[13] Preeti 
Saini, Bharti Nagpal, Puneet Garg, Sachin S.Kumar, 
suggested a hybrid CNN-Bi-LSTM deep learning-
based method for sugarcane yield forecasting based 
on ARIMA Traditional Stacked-LSTM, Holt-winter 
Time-series, and GPR methods are blended with a 
hybrid CNN-Bi-LSTM_CYP deep learning 
approach.[8] The CNN-BILSTM_CYP approach was  
superior to traditional methods Dilli Paudel, Allard 
de Wit, Hendrik Boogaard, Diego Marcos, Sjoukje A. 
Osinga, Ioannis N. Athanasiadis, In Germany, 
compared LSTM and 1DCNN models with soft wheat 
LSTM and 1DCNN models are compared based on 
their performance and interpreting ability in 
forecasting agricultural production.[8] S.S. 
Olofintuyi, E.A. Olajubu, DejiOlanike, in this research, 
a deep learning approach to forecasting cocoa yield 
based on a CNN and RNN with LSTM (long short-term 
memory) is presented.[7]  
Forecasting the cocoa yield using a deep learning 
approach (CNN-RNN + LSTM) is efficient. The 
minimum mean absolute error was achieved by 
using the proposed CNN-RNN with the LSTM model. 
The model was evaluated against other machine 
learning approaches. Hassanijalilian (2021) offered 
"Early Diagnosis of Iron Deficiency in Commercial 
Tomato Crop Using Electrical Signals," published in 
Frontiers. This study presents a new, non-
destructive technique for the early detection of iron 
deficiency in tomatoes by measuring their electrical 
signals. It enables real-time monitoring of plant 
health, provides a potential substitute for 
conventional chemical analysis, and supports more 
accurate nutrient management in agriculture. 
Hassanijalilian (2023), in "Measuring Soybean Iron 
Deficiency Chlorosis Progression and Yield 
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Prediction with Unmanned Aerial Vehicle," an 
Elsevier study, investigated the application of UAV 
imaging for tracking soybean iron deficiency 
chlorosis (IDC) and predicting yield.[23] The 
research illustrated that aerial photography can 
effectively evaluate IDC severity and yield 
predictability, and is a scalable and non-invasive tool 
for monitoring nutrient deficiencies and precision 
agriculture.  
 
2.0 PROPOSED SYSTEM ARCHITECTURE  
The proposed system architecture incorporates a 
dual-branch hybrid AI model that combines image 
and time series data. EfficientNetB0 is used in the 
first branch to process leaf images and detect 
nutrient deficiencies from Leaf Colour Chart (LCC) 
analysis.[2] The second branch uses LSTM (Long 
Short Term Memory) to process soil health and 
weather data over time, including parameters like 
nitrogen (N), phosphorus (P), potassium (K), pH, 
temperature, and moisture.[8] Outputs from both 

branches were combined using a weighted scoring 
layer to produce an overall fertility score, which was 
then classified into Low, Medium, or high fertility 
classes. This design enables real-time, precise 
fertilizer recommendations via a mobile app, 
equipping farmers with smart, data-based decisions 
in precision agriculture.[15]  
  
2.1 METHODOLOGY APPROACH  
2.1.1 Data collection  
This dataset contained parameters such as nitrogen 
(N), phosphorus (P), potassium (K), temperature, 
humidity, and rainfall. History of soil and weather 
information was derived from different regions, 
along with leaf photographs from crops showing 
signs of nutrient deficiency severity.[13] (Kaggle, 
2024) This dataset is essential for training and 
testing the performance of the hybrid model in 
predicting nutrient levels and suggesting the most 
appropriate fertilizer application for prevailing field 
conditions.  

 
Table 1 soil Dataset 

Time stamp  Soil pH  Nitrogen  Phosphorous  Potassium  

2024-10- 03  
10:54:53  

6.7  90  42  43  

2024-10-03  
16:54:53  

7.0  85  58  41  

2024-10-04  
04:54:53  

7.0  60  55  44  

2024-10-04  
10:54:53  

6.5  74  35  40  

 
Exploratory data analysis was performed based on a 
data set obtained from Kaggle and related to 
fertilizers and agriculture.[24] The variables in this 
dataset were timestamp, temperature, humidity, pH, 
and the presence of nitrogen, phosphorus, and 
potassium. Table 1 provides a summary of the soil 
dataset features used to make crop 
recommendations, and shows the fertilizer 
recommendations for a given crop. This information 
serves as a reference for farmers, in that they are able 
to select crops based on specific temperature, 
humidity, rainfall, and pH levels, and also select 
fertilizers needed, including nitrogen, phosphorus, 
and potassium.  

2.1.3 Label encoding.  
Label encoding is the process of converting 
categorical labels or data types into a numerical 
format that can be read by a machine. Label encoding 
is a popular technique adopted to process categorical 
data such that machine learning algorithms can make 
more informed decisions based on these labels. This 
is a significant pre-processing operation for 
structured data in supervised learning. In this study, 
the crop names in the label column were categorical 
variables and transformed into numerical values. 
[10],[20] For instance, the wheat and rice crops are 
represented as 0 and 1, respectively, using the label 
converter.  

 
Table II Label encoding 

Nutrient type  Encoded value  

Nitrogen (N)  0  

Phosphorus (P)  1  

Potassium (K)  2  

 
2.1.2 Normalization 
Normalization is a pre-processing method utilized to 
normalize the numerical features into a standard 

range, typically from 0 to 1. Normalization ensures 
that all the input variables have an equal 
contribution to the learning process and avoids 
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features with a high range from dominating features 
with a low range. Normalization is applied to 
machine learning to improve the model's 
performance, stability, and convergence speed, 
particularly for gradient descent-based or distance-
based methods. This method scales data between o 
and 1 

 Xnorrm = 
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
 

X = Original value 

• Xmin = Maximum value in the dataset 

• Xmax = maximum value of the dataset 

Z -score Normalization 

                   𝑍 =
𝑥−𝜇

𝜎
                

• 𝑥 is the original data value   
•  𝜇 is the mean 
• 𝜎 is the standard deviation 
• 𝑍   is the standardized value 

 
Table III Normalized dataset 

Time stamp   pH  N  P  K  Temp  H  

2024-10-03  
10:54:53  

0.00  1.0000  0.304  0.75  0.117  0.85  

2024-10-03  
16:54:53  

1.40  0.8333  1.000  0.25  0.257  0.07  

2024-10-04  
22:54:53  

1.00  0.0000  0.869  1.00  0.451  1.00  

2024-10-04  
04:54:53  

0.36  0.4667  0.000  0.00  1.000  0.00  

2024-10-04  
10:54:53  

0.84  0.6000  0.304  0.50  0.000  0.67  

 
The training data sample of the LSTM model was 
normalized, in which every record contained a 
timestamp and key soil nutrient parameters, 
including soil pH, nitrogen (N), phosphorus (P), and 
potassium (K). Feature values for the above 
parameters have been normalized between 0 and 1 
by applying min-max normalization to deliver 
standardized feature representation and enhance 
learning efficiency of the model [8],[11] These 
normalized values are used as inputs to the LSTM-
based model that forecasts soil fertility  
 
2.1.2. The correlation coefficient 
The correlation coefficient establishes the degree of 
dependence between these two variables; a value  

close to +1 indicates a strong positive correlation, 
that is, an increase in soil fertility parameters leads 
to an increase in leaf health; a value near -1 indicates 
a negative correlation, that is, an increase in one 
factor causes a decrease in the other. Mathematical 
Expression for improved Person Correlation  

PC(xy) =   
∑(xi−𝑥̅)(yi−𝑦̅) 

𝜎𝑥.𝜎𝑦
 

• Xi, yi = individual sample points (soil fertility 
and leaf nutrient deficiency values) 
• 𝑥,̅  𝑦̅  = Mean value of soil fertility and leaf 
nutrient deficiency values 
• σx, σy = standard deviations of the 
respective variables  

 

 
Fig.1.Correlation matrix crop dataset 
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The correlation matrix suggested a strong 
relationship between nutrients and environmental 
factors. Potassium (K) is strongly positively 
correlated with humidity (0.96),[3] implying that 
they increase together. Temperature and humidity 
were strongly negatively correlated (-0.53), implying 
warmer temperatures and lower humidity. Nitrogen 
(N) is negatively correlated with temperature (-0.43) 
and humidity (-0.27), implying that it decreases 
under warm and humid conditions. Phosphorus (P) 
is weakly correlated with K (0.39) and humidity 
(0.16). These observations demonstrate how climate 
regulates nutrient dynamics to enable climate-
resilient nutrient management. 

2.1.5 Feature extraction 
Feature extraction was performed on the pre-
processed data to identify the prominent attributes 
and trends. This process helps in reducing data 
dimensionality while maintaining important 
information. For soil and weather data, this may 
include the computation of derived measurements or 
the identification of prominent trends.[15] The 
procedure involves the selection of prominent 
features from raw input data, namely soil and 
weather variables, and followed by systematic 
temporal analysis. Then, normalization is used 
convergence during training Phase 

 
Table IV Feature extraction 

Input  Model Extracted Features Purpose 

Leaf Images Efficient BO Colour, texture, nutrient patterns Detect NPK deficiencies    

Soil 
&Weather 
data 

LSTM NPK trends, PH, rainfall, Temp   Predict soil fertility over time   

Combined 
Output 

Fusion Layer Weighted feature score Generate final fertility score 

 
3.0 SOILFERNET-LSTM MODEL 
The SOILFERNET module of our hybrid model 
utilizes an LSTM architecture to forecast soil fertility 
based on the processing of time-series Soil Health 
Card (SHC) data and past weather parameters. [8],[9] 
LSTM is a Recurrent Neural Network (RNN) 
specifically developed to solve the vanishing 
gradient problem that afflicts regular RNNs, 
rendering it particularly suitable for learning long-
term sequential data dependencies Soil nutrient 
levels rely on many variables that change over 
time—like the changing levels of nitrogen (N), 
phosphorus (P), and potassium (K), pH, temperature, 
and water. The trends over time require a 
mechanism that not only recalls past values but also 
comprehends how those lead towards the future 
state of the soil. Long Short-Term Memory (LSTM) 
has the capability of learning and remembering long 
term sequences  
 
 

LSTM CELL STRUCTURE 
              𝑓𝑡 = 𝜎(𝑊𝑓 . [ℎ𝑡 − 1, 𝑥𝑡] + 𝑏𝑓)          

               𝑖𝑡 = 𝜎(𝑊𝑖 . [ℎ𝑡 − 1, 𝑥𝑡] + 𝑏𝑖)   
              𝐶𝑡̅  = Tang (𝑊𝑐 . [ℎ𝑡 − 1, 𝑥𝑡] + 𝑏𝐶) 
               𝑐𝑡 = 𝑓𝑡 . 𝐶𝑡 − 1 + 𝑖𝑡 . 𝐶𝑡̅ 
             𝑜𝑡 =  𝜎(𝑊𝑜 . [ℎ1 − 1. 𝑥𝑡] + 𝑏𝑂) 
              ℎ𝑡 = 𝑜𝑡 . tanh  (𝐶𝑡) 
 
In these equations, the symbols 𝑓𝑡 , 𝑖𝑡 , and 𝑜𝑡   
represent the forget, input, and output gates, 
respectively. The functions σ and tanh represent the 
sigmoid and hyperbolic tangent activation functions, 
respectively, whereas 𝑊  and b signify the weight 
matrix and bias term, respectively. The intermediate 
cell state is indicated by 𝐶𝑡  and the long-term cell 
state is represented by 𝑐𝑡  . Additionally, 𝑡 − 1  and 𝑡 
denote the previous and current time steps, 
respectively, and 𝑥𝑡  and  ℎ𝑡  indicate the input and 
output at the current time step, respectively. 
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Fig:2 PROPOSED SYSTEM ARCHITECTURE 

 
4.0 LLCNET-EFFCIENTNET BO 
The Leaf and Land Condition Network (LLCNET) is 
important because it examines visual signs of 
nutrient shortage from images of plant leaves. It is 
based on EfficientNetB0, which is a cutting-edge 
convolutional neural network (CNN) model that is 
well received for its lightweight architecture and 
enhanced classification performance. The model was 
chosen because it has a great performance-
complexity trade-off and can be used in mobile and 
real-time scenarios in agriculture. The model was 
selected because it boasts a better performance-
complexity ratio and can be applied in mobile and 
real-time settings in agriculture  
 
4.1.1 Dataset  
The dataset for classifying leaf nutrient deficiency in 
this study was obtained from the Kaggle and other 
agricultural image databases. The data were 
separated into three observable signs of crop leaf 
nutrient deficiency classes: nitrogen (N) deficiency, 
phosphorus (P) deficiency, and potassium (K) 
deficiency. A total of 4,200 images of leaves were 

collected and marked using expert agronomic 
recommendations and Leaf Colour Chart (LCC) 
guidelines. Class distribution is given below: 
Nitrogen deficiency 1,400 images Phosphorus 
deficiency 1,400 images Potassium deficiency 1,400 
images  
 
4.1.2 Pre-processing  
Then followed data pre-processing and splitting after 
the acquisition and downloading of the nutrient 
deficiency leaf image dataset from Kaggle website 
and other actual agricultural databases All images 
were resized and pre-processed to 224×224 pixels to 
be consistent with EfficientNetB0 model input 
requirements. Rotation, contrast, and flipping were 
adopted as data augmentation strategies to inject 
variability and promote generalization. With this 
dataset, the model could learn colour and texture 
patterns specific to a particular deficiency in 
nutrients and enable accurate identification and real-
time diagnosis of leaf health in the proposed LLCNET 
architecture. The resizing task for the dataset was 
split into training and validation datasets to aid 
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supervised learning considerations. In this study, a 
70:30 ratio was used: 70% of the data for training 
and 30% for validation. This ratio provides the model 

with sufficient data to learn important features and 
test on unseen data for generalization performance.  

  

 
Fig: 3 sample of dataset image 

  
The above figure shows segmented leaf images 
indicating nitrogen (N), phosphorus (P), and 
potassium (K) deficiencies, presenting a visual 
dataset used in this research project. There is one 
particular nutrient deficiency per row, with four 
representative sample leaf images displayed to 
depict the usual symptoms. These slice images have 
become an important tool in the validation and 
training of deep learning-based U-Net segmentation 
models that detect and pinpoint nutrient stress 
patterns in the leaves of crops with a high degree of 
accuracy. Visual comparison aids i n the 
understanding of interclass differences and allows 
for robust classification and segmentation model 
construction for precision farming 
 

4.1.3 Model Architecture  
This research applied the integration of CNN-based 
models for segmenting and classifying leaf nutrient 
deficiencies. A U-Net model was utilized in clean leaf 
segmentation using the Dice coefficient and binary 
cross-entropy loss for precision enhancement. The 
EfficientNet-B0 model was used to classify Nitrogen 
(N), Phosphorus (P), and Potassium (K) deficiencies. 
It features a Global Average Pooling 2D, dense (512 
units), Dropout (0.5 and 0.1), and incorporates 
Adamax and RMS prop optimizers with the ReLU 
activation. Global Average Pooling contributes to the 
elimination of overfitting while still maintaining the 
essence of distinguishing features for classification 
accuracy.  

Table V Model Architecture 

Layer  Filters/units  Kernel size  Activation  

Efficient-B0 input  -  (224,224,3)  -  

Pooling2D  -  -  -  

Dropout  0.5  -  -  

Dense  512  -  ReLU  

Dropout  0..1  -  -  

Dense   224  -  ReLU  

Dense (Output)  3  -  Softmax  

 
5.0 FUSION MODEL-SOIL FERTILITY DETECTOR  
To improve the prediction accuracy, this research 
integrates the results of two distinct deep learning 
models: the SOILFERNET: LSTM-based model for soil 
fertility prediction from tabular time-series data 
(weather and Soil Health Card). LLCNET is a leaf 
classification model that uses EfficientNetB0, which 

searches for segmented leaf images to detect visual 
nitrogen deficiency. The Fertility Score is a weighted 
average between the two model predictions, that is, 
Soil Fernet and LLC Net. Soil Fernet, based on a Long 
Short-Term Memory (LSTM) model of soil and 
weather readings, was given a greater weighting of 
0.7, as it can produce more stable and long-term 
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fertility values. [3] LLC Net, based on an EfficientNet-
B0 model of deficiency quantification from leaf 
observation-based scores, is given a weighting of 0.3 
as it is a function to detect recent or apparent 
deficiencies. The final Fertility Score is obtained from 
the integration of these two scores, thus enabling the 
possibility of obtaining a better-balanced and 
accurate measure of soil health and, therefore, 
improving decision-making for fertilizer application.  
Soil Fertility Score:  
𝑆𝑐𝑜𝑟𝑒 = (0.7 × 𝑆𝑜𝑖𝑙𝐹𝑒𝑟𝑁𝑒𝑡) + (0.3) × 𝐿𝐿𝐶𝑁𝑒𝑡  
 
Fertility categorization:  Low (< 40), Medium (40–
70), High (> 70)    
Fertilizer Suggestion Depending on the score and 
deficiencies identified:  
• N Deficiency → Urea, Ammonium Sulphate  
• P Deficiency → Superphosphate, DAP  
• K Deficiency → MOP, SOP  Balanced → 
Organic compost.  
 
This specific approach enables farmers to use the 
correct type and quantity of fertilizer according to 
real soil and crop requirements.  

 
5.1 RESULT AND DISCUSSIONS  
In this study, a deep learning hybrid approach was 
employed to assess soil fertility and nutrient 
deficiency, based on image segmentation and time-
series analysis. The U-Net model and LSTM 
employed in this study produced promising 
intermediate results for their respective activities.  
 
5.1.1 U-Net Model Performance  
The U-Net model was trained on segmentation of the 
nitrogen-deficient area of a leaf. The model 
converged rapidly, and the training and validation 
accuracies converged to almost 98%. The training 
and validation losses decreased slowly and reached 
approximately 0.045, indicating minimal overfitting 
and excellent generalization capacity. Such 
performance guarantees that U-Net will segment the 
infected region of the leaf in the right manner, 
providing clean segmented outputs that can be 
utilized later for visualization or classification. This 
was achieved after pre-processing and resizing the 
dataset to a standard size of 256×256, followed by 
training with 50 epochs and a batch size of 8.  

 

 
Fig.5 loss Analysis 

 
In Figure 5, the Nitrogen (N) segmentation task loss 
graph shows that between epochs 0 and 20, the 
training and validation loss curves oscillate 
significantly. This indicates that the model was in the 
process of learning and adapting its parameters to 
identify the significant features from the dataset. 
After epoch 21, the loss curve stabilized significantly 
and converged at approximately 0.05, indicating that 
the U-Net model successfully learned the inherent 

patterns for nitrogen deficiency segmentation. The 
very small difference between the training and 
validation loss also assures the non-existence of 
overfitting and excellent generalization. interaction 
of machine and deep learning models, the system can 
precisely predict the soil fertility level and suggest 
proper fertilizer usage to result in maximum crop 
yield while practicing sustainable farming.  
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Fig 6 Accuracy Analysis 

 
In Figure 6, the accuracy graph of Nitrogen (N) 
deficiency segmentation demonstrates that in the 
range between epoch 0 and epoch 20, the training 
and validation accuracy both are highly fluctuated. 
This is as expected since the U-Net model is starting 
to learn and refine its parameters based on the 
segmented leaf dataset. At epoch 21 and beyond, the 
accuracy curves settle and stabilize, achieving and 
sustaining an accuracy level of about 97.8%. This 
consistent trend tells us that the model has learned 
the nitrogen deficiency characteristics well and is 
performing well on training as well as unseen 
validation data, without showing any overfitting.  
 

5.1.2 Performance of the LSTM Model  
The LSTM model was trained against time-series 
formatted soil health records data such as pH, 
nitrogen (N), phosphorus (P), potassium (K), 
temperature, and humidity. The model recognized 
temporal patterns in the variability in weather and 
soil quality. On training, strong learning behaviour in 
the LSTM network was observed. The loss showed 
decreasing trend sequentially through the epochs, 
and train accuracy continued improving. The 
resulting model output was employed to calculate 
the soil fertility score, a measure of prediction used 
for recommendation of fertilizer.  

 
Fig. 7 Conclusion matrix 

 
This result is exceptional, with an outstanding 
classification in every fertility category. The model 
provided high accuracy with special perfection for 
medium fertility classes. Such a predictable 
performance validates its potential application in 
agriculture through early and accurate fertility 
estimation. The high recall, precision, and F1-scores 

facilitate easy interpretation of model reliability. The 
confusion matrix created by the proposed model 
appears in Figure 7 To evaluate the effectiveness of 
the model, we computed the precision, recall, 
accuracy, and F1-score of the confusion matrix. 
These metrics show the strength of the model for all 
the fertility categories, as outlined in Table VI.   
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Table VI Performance metrics 

Matrix  Low  Medium  High  Average  

Precision  0.97  0.97  0.98  0.97   

Recall  0..97  1.00  0.94  0.97  

F1-score  0.97  0.99  0.96  0.97  

Support  107  177  130  414  

 
6.0 Conclusion  
In this study, we successfully designed and 
implemented individual components of a smart 
agricultural forecasting system in terms of soil 
fertility categorization. The U-Net architecture was 
used to accurately segment the leaf images to enable 
the extraction of important visual features. 
Furthermore, an LSTM model was used to investigate 
sequential environmental data on crop and soil 
activity. These components have been proven to 
contribute significantly when implemented 
individually. The task is in progress, and the 
combination of the U-Net segmentation output with 
an EfficientNet-B0 classifier, together with the 
temporal modelling capability of the LSTM, is 
ongoing. When complete, the system is expected to 
provide end-to end fertility level predictions from 
both image and environmental inputs. Preliminary 
classification results with the LSTM module showed 
high accuracy in fertility score prediction, as 
supported by performance metrics such as precision, 
recall, F1-score, and confusion matrix. Future studies 
will focus on the completion of model integration, 
performance tuning, and installation of the system 
for real-world agricultural advisory purposes. Other 
enhancements may include the incorporation of 
attention mechanisms to allow feature fusion with 
enhanced quality and testing the model with other 
crop varieties to boost its generalizability.  
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