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ABSTRACT 
This project tackles critical security issues within Fog-Assisted Internet of Vehicles (IoVs) by utilizing Deep 
Learning-based anomaly detection strategies. We implemented and compared various machine learning 
algorithms such as Support Vector Machine (SVM), Random Forest, Decision Tree, Naive Bayes, Deep Neural 
Network (DNN), and DNN Autoencoder, achieving up to 97% accuracy in identifying malicious activities within 
IoV networks. To further improve performance, we integrated ensemble methods, particularly a Voting Classifier, 
which delivered an exceptional 100% accuracy. This advancement reinforces secure communication in IoVs 
against a range of cyber threats including authentication failures, data manipulation, Distributed Denial-of-
Service (DDoS) attacks, and malware. Emphasizing the role of Fog-assisted architecture, our solution strengthens 
network security at the fog node level, contributing to the development of secure and dependable intelligent 
transportation systems. The outcomes of our work offer substantial societal value—ensuring safer roadways, 
protecting user data, and supporting reliable vehicle-to-infrastructure communication. By enhancing safety and 
network reliability, our approach highlights the transformative impact of cutting-edge technologies in fostering a 
smarter and more secure transportation ecosystem. 
 
Index Terms: Fog computing, secure communication, Internet of Vehicles, anomaly detection, fog-enabled IoVs. 
 
1. INTRODUCTION 
The Internet of Vehicles (IoVs) marks a significant 
advancement in transportation systems, evolving 
beyond the traditional Vehicular Ad-Hoc Networks 
(VANETs) to meet the complex needs of modern 
Intelligent Transportation Systems (ITS) [1], [2]. 
This evolution represents a crucial turning point in 
transportation history, introducing an era of 
improved traffic regulation, effective monitoring, 
mobile data collection, and sophisticated services 
such as real-time accident updates, in-vehicle 
multimedia streaming, and smart parking 
notifications [3]. The IoV ecosystem spans both city 
and rural environments, enabling communication 
between vehicles (V2V), the power grid (V2G), 
devices (V2D), infrastructure (V2I), and vice versa 
[2]. Additionally, IoVs contribute significantly to E-
health services, functioning as mobile healthcare 
units during emergencies [2]. 
Within the expansive domain of Intelligent 
Transportation Systems (ITS), IoVs are a 
foundational element in ensuring road safety and 
streamlining transport operations. This is achieved 
by collecting and analyzing data stored in 
centralized cloud systems, thus facilitating better 
decision-making [3], [4]. Furthermore, IoVs support 
efficient data transfer, processing, and storage, 
addressing a wide range of user and stakeholder 
requirements [5], [6]. However, the rapid expansion 

of the IoVs network has led to growing concerns 
regarding its security [3], [7]. 
 
As the IoVs infrastructure continues to develop, so 
too do the associated security risks calling for 
immediate  and effective countermeasures [3], [7]. 
Breaches in security not only interrupt 
communication flows but also threaten the 
confidentiality and reliability of transmitted data 
[4], [8]. Issues such as message congestion and 
security flaws during data exchange present serious 
obstacles in V2V communication within the IoVs 
ecosystem [4], [8]. To tackle these problems, fog 
computing has emerged as a viable solution by 
offering a distributed communication model that 
eases congestion and reduces security 
vulnerabilities [4], [9], [10]. 
 
Fog computing, introduced by Cisco in 2012, serves 
as an intermediary between cloud services and end 
users. It enhances traditional cloud models by 
providing computing, storage, and networking 
capabilities closer to the data source [12], [13]. 
Unlike centralized cloud systems, fog computing 
utilizes localized resources to ensure faster data 
processing and lower latency [14]. By handling data 
nearer to where it is generated, fog computing 
overcomes challenges like excessive latency, limited 
mobility, and network bottlenecks commonly seen 
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in cloud computing [14], [17]. 
Despite its benefits, fog computing also brings new 
security concerns. Its decentralized architecture 
makes local nodes vulnerable to various threats, 
including account hijacking, Distributed Denial of 
Service (DDoS) attacks, unauthorized data access, 
and data loss [12], [19], [20], [13], [14], [21], [22], 
[23], [24]. These risks compromise the integrity of 
IoVs communications and can significantly affect 
public safety. 
 
To address these pressing issues, this research aims 
to strengthen the security of fog-assisted IoVs (Fa-
IoVs) by overcoming the weaknesses of fog 
computing and addressing edge-level security 
threats. Fa-IoVs utilize fog computing to enhance 
communication efficiency and safeguard data 
transmission within the IoVs network [6], [27], [28]. 
By strategically deploying fog nodes throughout the 
network, congestion can be reduced and 
vulnerabilities addressed, thereby ensuring the 
reliable and secure operation of intelligent 
transportation systems 
 
2. LITERATURE SURVEY 
Kawartha et al. (2016) provided a comprehensive 
overview of the Internet of Vehicles (IoVs), 
highlighting its motivation, layered architecture, 
network model, challenges, and future aspects [1]. 
The authors emphasized the transformative 
potential of IoVs in shaping the future of 
transportation systems, particularly in facilitating 
communication among vehicles for enhanced traffic 
management and safety. They discussed the layered 
architecture of IoVs, encompassing vehicle-to-
vehicle (V2V), vehicle-to- grid (V2G), vehicle-to-
device (V2D), and vehicle-to- infrastructure (V2I) 
communication, and identified key challenges such 
as security and scalability. 
 
Xu et al. (2018) explored the role of the Internet of 
Vehicles in the big data era, shedding light on its 
implications for data management and analytics [2]. 
The authors discussed the integration of IoVs with 
big data technologies, emphasizing the potential for 
leveraging large-scale data generated by vehicles for 
various applications, including traffic optimization, 
predictive maintenance, and personalized services. 
They highlighted the importance of efficient data 
processing  and  analytics  in  harnessing  the  
full 
potential of IoVs in addressing transportation 
challenges. 
 
Contreras-Castillo et al. (2018) delved into the 
architecture, protocols, and security aspects of the 
Internet of Vehicles, offering insights into the 
underlying mechanisms and challenges [3]. The 

authors discussed the layered architecture of IoVs, 
emphasizing the need for robust communication 
protocols and security mechanisms to ensure the 
integrity and confidentiality of data transmission. 
They highlighted the importance of addressing 
security vulnerabilities such as message congestion 
and security threats to enable secure and reliable 
communication among vehicles. 
 
Yaqoob et al. (2019) proposed a congestion 
avoidance mechanism through fog computing in the 
Internet of Vehicles, aiming to alleviate network 
congestion and enhance communication efficiency 
[4]. The authors introduced fog computing as a 
promising approach to offload computation tasks 
and reduce data transmission latency in IoVs. They 
discussed the deployment of fog nodes at the 
network edge to process data locally, thereby 
mitigating congestion and improving overall system 
performance. The proposed mechanism 
demonstrated potential in enhancing the scalability 
and reliability of IoVs communication. 
 
Zhang and Li (2020) presented an efficient and 
secure data transmission mechanism for the 
Internet of Vehicles in a fog computing environment, 
focusing on privacy protection [6]. The authors 
addressed security and privacy concerns associated 
with data transmission in IoVs, particularly in fog 
computing environments where data processing 
occurs at the network  edge.  They  proposed  a  
secure  data transmission mechanism that 
incorporates privacy- preserving techniques to 
safeguard sensitive information from unauthorized 
access. The mechanism demonstrated effectiveness 
in ensuring secure and privacy-preserving data 
transmission in IoVs. 
 
Song et al. (2020) proposed a fog-based identity 
authentication scheme for privacy preservation in 
the Internet of Vehicles, aiming to enhance security 
and privacy protection [7]. The authors addressed 
the security challenges of identity authentication in 
IoVs, particularly in fog computing environments 
where data processing occurs locally. They proposed 
a novel authentication scheme that leverages fog 
nodes to verify the identities of vehicles while 
preserving privacy. The scheme demonstrated 
effectiveness in ensuring secure and privacy-
preserving authentication in IoVs. 
 
Yaqoob et al. (2018) introduced a fog-assisted 
congestion avoidance scheme for the Internet of 
Vehicles, aiming to enhance communication 
efficiency and mitigate network congestion [18]. 
The authors proposed a distributed congestion 
avoidance mechanism that leverages fog nodes to 
offload computation tasks and optimize data 
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transmission in IoVs. They discussed the 
deployment of fog nodes at strategic locations to 
dynamically adjust traffic flow and alleviate 
congestion. The proposed scheme demonstrated 
potential in improving the scalability and reliability 
of IoVs communication. 
 
Kang et al. (2018) presented a privacy-preserved 
pseudonym scheme for fog computing-supported 
Internet of Vehicles, focusing on enhancing privacy 
protection [27]. The authors addressed privacy 
concerns associated with pseudonym management 
in IoVs, particularly in fog computing environments 
where data processing occurs locally. They proposed 
a pseudonym management scheme that leverages 
fog nodes to generate and manage pseudonyms for 
vehicles while preserving privacy. The scheme 
demonstrated effectiveness in ensuring privacy- 
preserving pseudonym management in IoVs. 
 
Wang et al. (2018) proposed a fog-enabled real-time 
traffic management system for offloading in the 
Internet of Vehicles, aiming to improve traffic 
management efficiency [28]. The authors introduced 
a fog-enabled architecture that leverages fog nodes 
to offload computation tasks and enhance real-time 
traffic management in IoVs. They discussed the 
deployment of fog nodes at roadside units (RSUs) to 
collect and process traffic data locally, thereby 
improving the responsiveness and scalability of 
traffic management systems. The proposed system 
demonstrated potential in optimizing traffic flow 
and reducing congestion in IoVs. 
 
The significance of fog computing in addressing the 
challenges of the Internet of Vehicles, particularly in 
enhancing communication efficiency, security, and 
privacy protection. Various research efforts have 

proposed innovative solutions leveraging fog 
computing to optimize data processing, mitigate 
network congestion, and enhance security in IoVs. 
However, there remain opportunities for further 
research to address emerging challenges and 
advance the state-of-the-art in fog-assisted IoVs. 
 
3. METHODOLOGY 
a) Proposed Work: 
The proposed work introduces an Autoencoder 
Convolutional Neural Network (CNN)[48] 
methodspecifically designed for enhancing security 
in fog-assisted Internet of Vehicles (IoVs) 
environments. This method utilizes the combined 
strengths of CNN architectures and autoencoder 
mechanisms to construct a powerful anomaly 
detection model capable of identifying potential 
security threats within IoVs systems. 
To evaluate the effectiveness of the proposed model, 
a comparative study will be carried out against 
conventional machine learning techniques such as 
Decision Trees (DT), Random Forests (RF) [40], 
Support Vector Machines (SVM) [43], and Naive 
Bayes (NB) [39]. This analysis aims to determine 
which model offers the best performance in 
anomaly detection and threat mitigation for fog-
assisted IoVs networks. 
In summary, this work aims to contribute to the 
advancement of IoVs network security by 
introducing an innovative deep learning approach. 
By integrating autoencoder and CNN technologies, 
the proposed method targets the efficient 
identification and resolution of security 
vulnerabilities. Through thorough experimental 
evaluation and comparative testing, the study seeks 
to pinpoint the most effective anomaly detection 
model for ensuring the safety and reliability of fog-
assisted IoVs systems. 

 
b) System Architecture: 

 
Fig 1 Proposed Architecture 

 
The system architecture designed for anomaly 
detection in fog-assisted Internet of Vehicles (IoVs) 
networks consists of several key phases. The 
process starts with the input of the KDDCUP dataset, 
which serves as the foundational data for training 
and evaluating anomaly detection models. To 
prepare the data for analysis, preprocessing steps 
such as scaling and label encoding are applied, 
followed by data visualization. Next, feature 

selection techniques are used to identify the most 
significant attributes, thereby improving the 
efficiency and accuracy of model training 
 
After preprocessing, the dataset is divided into 
training and testing subsets, allowing for proper 
model development and validation. Multiple 
algorithms are then employed to detect anomalies, 
including Support Vector Machines (SVM) [43], 
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Random Forest [40], Decision Trees, Naive Bayes 
[39], Autoencoder CNN, Deep Neural Networks 
(DNN), and the Voting Classifier. The performance 
of each model is measured using evaluation metrics 
such as accuracy, precision, recall, and F1 score 
 
In the final stage, a detailed performance 
comparison is conducted across all algorithms to 
identify the most effective method for anomaly 
detection in fog-assisted IoVs networks. This 
structured architecture supports a thorough 
evaluation process, helping to determine the best-
suited techniques for improving the security and 
reliability of IoVs environments. 
 
c) Dataset: 
For this project, the KDD Cup dataset has been 
selected for anomaly detection, as it is a well-
established benchmark in the field of cybersecurity. 
The dataset contains network traffic data generated 
from a simulated environment, offering a realistic 
portrayal of various intrusion attempts and 
malicious behaviors. It includes detailed features 
such as protocol types, service classifications, 
connection durations, and IP address information, 
allowing for in-depth analysis, Each data instance is 
labeled as either normal or anomalous, making it 
highly suitable for supervised machine-learning 
models This dataset is widely used by researchers 
to evaluate and benchmark the performance of 

anomaly detection algorithms in identifying 
potential cyber threats. Its richness in feature 
diversity and clearly labeled instances make it a 
valuable resource for comparing different detection 
techniques. Ultimately, the KDD Cup dataset plays a 
pivotal role in enhancing anomaly detection 
systems and contributes significantly to the 
development of effective cybersecurity solutions 
 
The KDD dataset, derived from the KDD Cup 1999 
data, is used for deep learning–based anomaly 
detection in fog-assisted Internet of Vehicles (IoVs) 
networks due to its comprehensive and realistic 
representation of network traffic. Widely 
recognized in the field of network security and 
intrusion detection, the dataset contains diverse 
features such as protocol types, service types, and 
connection durations, which make it highly suitable 
for identifying abnormal patterns in IoVs 
environments. Its labeled instances of normal and 
malicious activity enable the application of 
supervised learning techniques, allowing deep 
learning models to be effectively trained and 
evaluated. By providing valuable insights into traffic 
behavior and anomaly patterns within IoVs, the 
KDD dataset plays a crucial role in advancing secure 
and reliable anomaly detection solutions in fog-
assisted vehicular networks.     
              

 
d) Data processing: 

 
 
Data processing for anomaly detection in fog-
assisted Internet of Vehicles (IoVs) networks 
involves several steps to prepare the dataset for 
model training. 
 
Loading the Dataset: The process begins by 
importing the dataset into a pandas DataFrame, a 
widely-used Python library for efficient data 
analysis and manipulation. This facilitates smooth 
handling and exploration of the dataset.. 
 
Keras Processing: The dataset is then preprocessed 
using Keras, a high-level deep learning library. 
Keras offers several built-in functions that help in 
preparing data effectively for neural network 
models. 

 
Dropping Unwanted Columns: Irrelevant or non-
contributory columns are eliminated from the 
dataset. This step helps in reducing unnecessary 
complexity and allows the model to focus on 
meaningful features, improving performance.. 
 
Data Normalization: All continuous variables are 
scaled to a uniform range to ensure that no feature 
dominates due to its larger values. Normalization 
helps the model learn more efficiently and fairly 
from all features. 
 
Encoding Categorical Variables: Categorical data is 
transformed into numerical format using techniques 
like one-hot encoding. This conversion is essential 
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since deep learning algorithms require input in 
numerical form. 
 
Splitting the Dataset: Finally, the cleaned and 
preprocessed data is divided into training and 
testing sets. The training set is used for building the 
anomaly detection model, while the testing set is 
utilized to validate its performance.By following 
these steps, the dataset is efficiently prepared for 
training deep learning models, enabling accurate 
anomaly detection in fog-assisted IoVs networks. 
 
e) Visualization: 
In fog-assisted Internet of Vehicles (IoVs) networks, 
visualization plays a crucial role in understanding 
network behavior and evaluating the effectiveness 
of anomaly detection models. By visualizing 
network traffic patterns, researchers can identify 
deviations and unusual behavior that may indicate 
potential threats. Feature distribution plots help in 
analyzing the characteristics of traffic data, enabling 
the detection of outliers. Additionally, visual 
representations of model performance metrics, such 
as precision-recall curves and confusion matrices, 
offer deeper insights into the accuracy and 
reliability of detection models. These visual tools 
support. informed decision-making regarding model 
selection, optimization, and the implementation of 
security measures. Overall, visualization acts as a 
bridge between complex raw data and actionable 
intelligence, helping researchers and practitioners 
navigate the intricacies of fog-assisted IoVs 
networks with clarity and precision. 
 
f) Label Encoding: 
Label encoding is a key preprocessing technique 
used in deep learning-based anomaly detection for 
fog-assisted Internet of Vehicles (IoVs) networks. 
This method transforms categorical variables into 
numerical values, allowing machine learning models 
to efficiently interpret and process the data. In the 
context of IoVs, categorical features such as vehicle 
types, communication protocols, and event types 
must be converted into numerical format to be 
compatible with deep learning models like 
convolutional neural networks (CNNs) or recurrent 
neural networks (RNNs). By assigning a unique 
integer to each category within a variable, label 
encoding helps the model understand and learn 
patterns associated with different categories and 
their potential anomalies in network traffic. Once 
encoded, these categorical values can be integrated 
with continuous variables as input features, thereby 
improving the performance and precision of the 
anomaly detection system. Therefore, label 
encoding is a vital step in preparing categorical data 
for model training and ensuring effective anomaly 
detection in fog-assisted IoVs networks. 

g) Feature Selection: 
Feature selection is an essential step in deep 
learning-based anomaly detection for fog-assisted 
Internet of Vehicles (IoVs) networks, as it focuses on 
identifying and selecting the most important 
features from the dataset to enhance model 
efficiency and performance. In fog-assisted IoVs 
environments, datasets often include a wide range 
of features related to various aspects of network 
traffic, and selecting only the relevant ones helps 
reduce dimensionality, eliminate noise, and increase 
the model’s accuracy in detecting anomalies. 
Techniques such as correlation analysis, mutual 
information, and tree-based feature importance can 
be used to evaluate the significance of each feature 
and retain those with strong predictive capability. 
By focusing on informative attributes and removing 
redundant or irrelevant ones, feature selection 
simplifies the training process, lowers 
computational load, and decreases the likelihood of 
overfitting. Moreover, it improves model 
interpretability by concentrating on the most 
impactful variables, offering insights into the factors 
contributing to anomalies in the network.Overall, 
feature selection is crucial for building effective and 
efficient deep learning models for anomaly 
detection in fog-assisted IoVs networks 
 
h) Algorithms: 
Support Vector Machine (SVM):The Support 
Vector Machine is a supervised learning algorithm 
utilized for both classification and regression tasks. 
It functions by determining the best possible 
hyperplane that separates classes of data while 
maximizing the distance (margin) between them. 
SVM[43] performs well in datasets with many 
features and is less likely to overfit, making it a 
strong candidate for anomaly detection in complex 
data environments. 
 
Random Forest: Random Forest is an ensemble 
learning technique that generates multiple decision 
trees during training and makes predictions based 
on the majority vote (for classification) or average 
(for regression) of these trees. It handles high-
dimensional and large datasets effectively, is robust 
to overfitting, and performs well even with noisy 
data, making it an excellent method for detecting 
anomalies.[40] 
Decision Tree: A Decision Tree is a supervised 
learning model that breaks down the dataset by 
making decisions based on attribute values, forming 
a tree-like structure. It is simple to use, 
interpretable, and works with both numerical and 
categorical features. Despite its advantages, decision 
trees are often prone to overfitting and may not 
generalize effectively without techniques like 
pruning or limiting tree depth. 
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Naive Bayes: Naive Bayes is a statistical 
classification algorithm grounded in Bayes’ 
theorem, assuming that all features are independent 
of each other. Despite being straightforward in 
design, Naive Bayes[39] proves to be highly 
effective for classification, particularly with 
extensive datasets. It is fast, requires relatively 
small amounts of training data, and maintains good 
performance even when some features are 
irrelevant. 
 
Deep Neural Network (DNN): A Deep Neural 
Network is a kind of neural architecture comprising 
several hidden layers between the input and output 
nodes.[23] It is capable of identifying intricate 
patterns from massive data volumes, which makes it 
highly applicable to anomaly detection in fog-
assisted IoVs networks. However, DNNs typically 
need significant computational power and can 
encounter challenges like vanishing gradients or 
overfitting unless appropriate regularization 
methods are applied 
 
CNN Autoencoder: A CNN Autoencoder is a 
specialized form of autoencoder that incorporates 
convolutional layers for extracting and 
reconstructing features. It compresses the input into 
a compact latent representation and then 
reconstructs the original input from this 

representation. CNN Autoencoders are well-suited 
for unsupervised anomaly detection, as they 
effectively model spatial relationships in data and 
detect anomalies based on discrepancies during 
reconstruction 
 
Voting Classifier: The Voting Classifier is an 
ensemble technique that integrates predictions 
from several different classifiers to make a final 
decision. It combines individual classifier outputs 
using methods like majority voting or weighted 
voting. This approach often results in higher 
accuracy than any single model alone, as it 
capitalizes on the complementary strengths of 
various classifiers to improve generalization and 
stability. 
 
4. EXPERIMENTAL RESULTS 
Accuracy: Accuracy refers to the effectiveness of a 
model in correctly identifying both positive (e.g., 
patients with a condition) and negative (e.g., healthy 
individuals) instances. It represents the overall 
correctness of the predictions made by the model. 
To calculate accuracy, one must determine the ratio 
of correctly classified cases—both true positives 
(TP) and true negatives (TN)—to the total number 
of cases assessed. The formula for accuracy is 
 

 
Accuracy = TP + TN TP + TN + FP + FN. 

 
Fig 3 Accuracy Comparison Graph 

 
F1-Score: F1-Score: This machine learning evaluation statistic gauges how accurate a model is. It combines a 
model's recall and precision scores. The number of times a model correctly predicted the full dataset is calculated 
by the accuracy metric. 
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Fig 4 F1 Score Comparison Graph 

 
Precision: Precision evaluates the fraction of 
correctly classified instances or samples among the 
ones classified as positives. Thus, the formula to 
calculate the precision is given by: 

Precision = True positives/ (True positives + False 
positives) = TP/(TP + FP) 

 

 
 

 
Fig 5 Precision Comparison Graph 

 
Recall: In machine learning, recall is a metric that 
assesses a model's capacity to locate all pertinent 
examples of a given class. It gives information about 
how well a model captures instances of a particular 

class by dividing the number of accurately predicted 
positive observations by the total number of real 
positives. 

 

 

 
Fig 6 Recall Comparison Graph 

 

 
Fig 7 Performance Evaluation Table 
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Fig 8 Home Page 

 

 
Fig 9 Registration Page 

 

 
Fig 10 Login Page 

 
Internet of Vehicles (IoVs) and fog computing have 
come together to create fog-assisted IoVs (Fa-IoVs), 
which provide answers to problems like traffic and 
security risks. Using the NSL-KDD dataset, we 
developed a deep learning-based anomaly detection 
model, CAadet, specifically designed for Fa-IoVs 
networks. We proved CAadet's superiority over 
current schemes through thorough evaluation, 
highlighting its effectiveness in identifying 

anomalies and boosting network security. 
Furthermore, by utilizing a variety of algorithmic 
capabilities, the addition of a Voting Classifier as an 
extension to the project significantly increased 
accuracy. A safe and intuitive platform for anomaly 
detection in Fa-IoVs networks is ensured by 
integrating a Flask-based front-end with SQLite 
authentication. 

 
6. FUTURE SCOPE 
 

 
Fig 11 Upload Input Data 
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Fig 12 Predicted Results 

 
5. CONCLUSION 
Anomaly detection for fog-assisted IoVs networks 
has a number of potential directions for future 
research and development. In order to improve 
detection skills, future research could concentrate 
on examining suggested methodologies in other IoT 
domains using a variety of datasets and deep 
learning models. The performance of anomaly 
detection models could also be improved, false 
alarms could be decreased, and real-time 
responsiveness might be enhanced. Additionally, 
investigating the integration of sophisticated 
anomaly detection methods with intelligent 
transportation systems may enhance the 
effectiveness and safety of vehicle networks. All 
things considered, further developments in anomaly 
detection techniques and their use in fog-assisted 
IoV networks have the potential to greatly improve 
cybersecurity and communication dependability in 
future intelligent transportation systems. 
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