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Abstract:  One of the most common causes of blindness in diabetics is diabetic retinopathy, thus screening is 
crucial. Once the issue has been recognized, it's critical to take the appropriate action. This work uses the two-
phase experimental scheme to address some of the most difficult problems in DR detection, including image 
quality, noise, and variability of the DR manifestation.  
Phase 1 findings included the adoption of CNN models with poor performance due to overtraining and insufficien
t preprocessing, as well as basic preprocessing that had issues with generalization. 
In addition to using various data augmentation techniques and regularization methods like dropout and L2 regul
arization to eliminate the aforementioned issues, Phase 2 was improved by implementing sophisticated data pre
processing techniques like contrast limited adaptive hue saturation and intensity (CLAHE) to enhance contrast. 
The CNN models, including MobileNetV2, InceptionV3, and InceptionResNetV2, were further finetuned using ens
emble techniques such voting, weighted average, and averaging. 
Two datasets showed improvements; MobileNetV2 had the best test accuracy, at 96.11, while ensemble approach
es enhanced the model's robustness with an AUC of 0.95. To the best of our knowledge, this work provides a better 
and more efficient combination of advanced preprocessing and ensemble methods for DR detection to support 
clinical and resource-constrained settings that need early diagnosis and intervention. 
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1. Introduction 
Diabetic Retinopathy (DR) is a major cause of 
blindness and visual impairment in populations with 
diabetes. WHO says up to 830 million people 
worldwide suffer from diabetes as the WHO reports 
in November 2024 and the disease is projected to 
erupt in the coming decades [1] . According to the 
International Diabetes Federation (IDF), nearly one-
third of people over the age of 40 who have diabetes 
will develop diabetic retinopathy if not managed 
correctly [2]. Not only does DR decrease the quality 
of life, but managing a patient who has vision loss can 
be costly as healthcare systems need to provide long-
term management, medical intervention, and 
rehabilitation. Early detection and treatment of DR is 
critical for preventing severe visual impairment and 
blindness, resulting in its being a major public health 
problem. 
Diabetic Retinopathy is a complication of Diabetes 
that is a sign of lack either of control or ignorance of 

the disease, it’s a sign something is wrong in the 
retina due to damage in the walls of Blood vessels 
that leads to loss of vision. This is largely caused by 
very long periods of high blood sugar levels which 
destroy the blood vessels in the retina, causing them 
to leak, swell, or close. These changes can continue 
over time, causing the growth of abnormal blood 
vessels and bleeding, retinal detachment, and 
permanent eye damage [3]. 
As shown in Figure 1 there are two main types of 
diabetic retinopathy, (a.). Non-Proliferative Diabetic 
Retinopathy (NPDR) is the early stage where the 
blood vessels in the retina become weakened and 
leak fluid causing swelling and the formation of small 
hemorrhages. Usually, vision loss is minimal at this 
stage. (b.) In advanced cases, abnormal blood vessels 
begin to grow on the retina and these can leak blood, 
causing severe vision impairment and potential 
blindness. It is the most dangerous type of DR and 
needs urgent medical treatment [4].  
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Figure 1: Types of diabetic retinopathy (a) Normal Condition (b) NPDR (c) PDR 

 
Statistics on DR highlight its prevalence and 
impact: Almost one-third of people with diabetes 
have some form of DR and between 10-20 percent 
may have the more serious form of the disease, 
proliferative DR [4], research suggests. It is also 
projected that by 2045, 1 of 8 people will be suffered 
from diabates, further reducing the DR burden. 
Against this alarming background, early detection 
becomes key to stopping this progress toward vision-
threatening stages. 
The good news is that DR can be detected early and 
treated in time to reduce blind rates significantly. If 
the DR is diagnosed in early stages laser therapy and 
intraocular injections have been shown to prevent 
vision loss [5]. In addition, anti-VEGF (vascular 
endothelial growth factor) injections can be used to 
prevent further growth of abnormal blood vessels in 
the more advanced cases. Unfortunately, DR is often 
diagnosed late because in the early, silent stages it 
usually advances without any symptoms for people 
to notice. Screening programs play a major part in 
the timely detection of DR. Routinely detection by DR 
within organized screening programs, has led to 
substantially improved DR detection rates and 
dramatic reductions in blindness due to the disease. 
For example, the United Kingdom's National Health 
Service (NHS) has introduced a national diabetic 
retinopathy screening program, within this context 
blindness due to DR has decreased significantly [6]. 
However many low-resource countries don’t have 
such programs available to them, leaving much of the 
population unaware until the disease is well 
advanced. 
Because of the rising incidence of diabetes and DR, 
automated systems have been developed for DR 
detection, to help healthcare providers to detect the 
disease more efficiently and accurately. Existing DR 
screening methods are based on manual eye retinal 
image inspection using trained ophthalmologists, a 
tedious, expensive, error-prone task. Over the past 
few years, computer-aided detection (CAD) systems 
have been seen as a possibility to facilitate early 
detection of DR through automated analysis of 
retinal images [7]. Convolutional neural networks 

(CNNs), together with machine learning (ML) and 
deep learning (DL) algorithms, are occupying an 
increasingly important position in the development 
of DR detection systems. These systems assess 
retinal images and make stage classifications for 
various degrees of DR by pattern recognition of 
microaneurysms, hemorrhages, exudates, etc. 
Although these systems have demonstrated great 
potential, they experience several challenges 
including obtaining high accuracy across different 
datasets and their susceptibility to image quality as 
well as noise and artifacts. 
Several challenges exist in the field of computerized 
DR detection, which can be broadly categorized as 
follows: 
Data Quality and Variability: The quality of retinal 
images can vary greatly depending on which imaging 
devices, the movement of the patient, and the lighting 
conditions. Inevitably, DR images have low quality; 
that is, there is noise and artifacts and the algorithms 
will find it difficult to pinpoint DR-associated key 
features. 
Generalization across Datasets: Because of 
variations in image quality, patient demographics, 
and disease presentation, machine learning models, 
and particularly deep learning models, have difficulty 
generalizing well across different datasets. The 
models trained on one data set might also work 
poorly because they are applied to a different set of 
images. 
Class Imbalance: As a result, most of the DR datasets 
contain a large percentage of no signs of DR (normal) 
images, leading to class imbalance during model 
training. It can lead to lower sensitivity when 
detecting DR's early stages and models can miss tiny 
signs of the disease. 
Interpretability: The lack of interpretability is 
usually a drawback to Deep learning models. To aid 
in the adoption of such systems in clinical settings, 
medical professionals must trust the results of these 
systems, and, thus, a critical understanding of how 
such models arrive at a diagnosis is required. 
Model Robustness: The robustness of DR detection 
models is essential for real-world deployment since 
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retinal images may be also affected by diabetic 
macular edema (DME), cataract, or retinal vein 
occlusion. Solutions have to be designed to be able to 
achieve this without compromising accuracy. 
2. Related Work 
The first reference to DR was in the late 19th century 
when the link between diabetes and eye disease was 
linked. Treatment of the eye disease itself was a focus 
of the diabetes treatment early on. Better 
examination of the retina meant that diagnosis was 
assisted in the 1930s, and through fundus 
photography [8]. The first breakthrough came in the 
1970s with laser photocoagulation, which is still the 
gold standard of therapy for advanced DR. Laser 
therapy had been shown to prevent vision loss in the 
Diabetic Retinopathy Study (DRS) and Early 
Treatment Diabetic Retinopathy Study (ETDRS) was 
equally effective for the prevention of vision loss in 
patients with PDR [9]. During the 2000s, the 
discovery of vascular endothelial growth factor 
(VEGF) [10], allowed Ranibizumab and Aflibercept 
(anti-VEGF injections) to revolutionize treatment 
across diabetic macular edema (DME) and 
proliferative DR [11]. There was also introduced 
steroid therapy, which, however, entails risks such as 
cataracts and elevation of intraocular pressure. 
Vitrectomy surgery became common for retinal 
detachment and hemorrhage, in advanced cases. 
Computer-aided detection systems (CAD) were 
begun in the 1990s for detection, using early 
algorithms for features such as microaneurysms and 
hemorrhages in retinal images [12]. The still 
increasing diagnostic accuracy was achieved in the 
2000s by the introduction of artificial intelligence 
(AI) technologies, which were able to analyze large 
collections of images and detect signs of DR in their 
early stage. In the 2010s a significant leap was 
developed through the advent of deep learning, in 
particular convolutional neural networks (CNNs). 
Trained on large datasets, these models are now able 
to automatically classify DR severity with accuracies 
that can rival human experts and are poised to allow 
widespread screening in resource-limited settings. 
The field is still evolving, with gene therapy, stem cell 
treatment, and AI-driven detection systems all 
promising future solutions. However, since the 
treatment and diagnosis of diabetic retinopathy have 
been significantly improved over the years, the site is 
now on the path of early detection and better patient 
outcomes via technology. While treatments that are 
traditionally used—laser therapy and anti–VEGF 
injections [12], for example—have been successful, 
the rise in the number of DR cases has prompted the 
need for more scalable, more efficient detection 
systems. Computer-aided detection (CAD) methods, 
AI, and deep learning have come as a powerful tool in 
the early detection of DR that enable faster and more 
precise diagnosis at the primary care level [13]. 
Subsequently, the further development of this 

technology has led to an increasing quantity of 
research considering the use of machine learning 
algorithms and automated analysis of retinal images 
in determining and identifying DR. As a literature 
survey several studies was focussed on the 
techniques used to achieve these methods, the 
outcome of these techniques, and the outcome of 
these techniques, discussing the strong suits and 
pain points of each method and where we can still 
improve DR detection systems. In 2016, Doshi, 
Shetty, and Sidhpura (2016) [14] tried to use a 
custom deep-learning framework for the detection of 
diabetic retinopathy (DR). Using data preprocessing 
customized for DR features, their approach provided 
over 85% sensitivity and specificity. The study did 
not specify datasets or pretrained models though, so 
it’s quite limited in the sense of generalizing to 
different ones. In 2019, Zago et al. (2019) [15] 
applied early DR detection using three years, 
applying ensemble CNNs, which improve diagnostic 
accuracy by combining multiple architectures. No 
dataset was identified and their model was over 90% 
accurate illustrating the power of ensemble methods.  
During the next year 2020, there was a profound step 
forward in DR detection and grading. To improve the 
performance of an automated diabetic retinopathy 
diagnosis, Alyoubi et al. [16] proposed a hybrid 
system, which combines the traditional feature 
extraction with the CNNs, achieving 93% accuracy on 
the DAIRETDB1 dataset. VGG16 model was first pre-
trained on the Messidor-2 dataset and used on this 
dataset in Pradhan et al. [17] with 94% accuracy, and 
further feature maps were optimized for grading. 
VGG16 and VGG19 on the APTOS dataset are 
compared by Nguyen et al. [18], achieving 91 percent 
accuracy for VGG16 and arguing for architecture-
specific performance. For instance, Mishra et al. [19] 
developed a custom CNN for the Kaggle EyePACS 
dataset, while adaptive preprocessing techniques led 
to 92 percent accuracy. DR research was dominated 
by hybrid and ensemble methods in 2021. In ResNet, 
Gangwar and ravi [20] took the strengths of 
Inception to improve accuracy as well as efficiency to 
implement the Inception within ResNet and 
introduced a hybrid Inception-ResNet model which 
attained 95% accuracy over the Kaggle DR dataset. In 
another article authors Tufail et at. [21] used an 
ensemble of ResNet50 and InceptionV3, attaining 
94% accuracy on the EyePACS dataset, and 
sustaining robustness against overtraining. In this 
work, Oh et al. [22] adopted EfficientNet, and 
achieved 96% accuracy on Messidor, which 
illustrates the computational efficiency and real-time 
applicability of the model. Using the IDRiD dataset, 
Dai et al.  [23] combined traditional machine learning 
and CNNs but added feature selection techniques to 
attain 93% accuracy. In particular, Shital N. Firke and 
Ranjan Bala Jain [24] suggested a custom CNN model, 
which provided the accuracy of 90%. The authors of 
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the study did not provide specific datasets, but the 
work highlighted the need for more sophisticated 
preprocessing methods for enhancing the model’s 
results. Tassanee Hattiya et al. [25] proposed a 
hybrid model using the APTOS 2019 dataset and the 
achieved an accuracy rate of 92%. The work 
presented here focused on the ways of improving the 
preprocessing which, in its turn, improved feature 
extraction and therefore the model’s performance. 
[25] 
In the very next year, with 2022 research focused on 
refining feature extraction and preprocessing. 
Moreover, Doly Das et al. [26] designed a hybrid CNN 
architecture with multi-scale feature extraction and 
reported 94% accuracy on the EyePACS dataset. 
Combining ResNet and DenseNet for DR detection, 
Rahab et al. [27]  attained 93% accuracy on IDRiD 
and Nandaku et al. [28] developed a custom CNN 
with 91% accuracy on Messidor. Whereas Butt et al. 
[29] explored the effect of activation functions on 
their model and were able to report 92% accuracy on 
the Kaggle dataset. Based on EyePACS, Gopi et al. [31] 
incorporated advanced preprocessing steps into 
CNNs which provided 93% accuracy, whereas 

Yasashvini et al. [32] combined pre-trained CNNs 
(and other pre-trained models) with custom layers to 
achieve 95% accuracy on IDRiD. This problem was 
tackled by Al-Omaisi Asia [33] et al. with ResNet50 
and improved feature selection with 92% accuracy 
on the APTOS dataset. Ensemble learning and 
domain expertise were focused on in Advancements 
in 2023. The authors Md. Nahiduzzaman et al . [34] 
convinced the test subjects to find patterns among 
benign and malignant nevi by introducing novel data 
augmentation techniques and ensemble models to 
achieve 93% accuracy on EyePACS. Clinical insights 
are incorporated into CNN design by Malhi et al. [35], 
achieving 94% on Messidor, and novel feature 
extraction pipelines are proposed by Kalyani et al. 
[36], achieving 93% on IDRiD.  
Real-time and explainable AI for DR detection has 
been recently studied in 2024. An efficient DR 
screening system in real time was developed by Chia 
et al. [36]  using EfficientNet while achieving 95 
percent accuracy in APTOS and scalable for clinical 
use. Jain et al. [37] combined multiple CNNs for DR 
detection with 94% accuracy on the Kaggle dataset, 
balanced datasets, and interpretability. 

 
Table 1: A summarised table for the research done during the period of 2016-24 

S. 
no 

Authors Year 
Method 
Used 

Dataset 
Acc 
(%) 

Key Findings 

1 Darshit Doshi et el. [14] 2016 Custom CNN N/A 85 
Custom architecture for early 
detection 

2 
Gabriel Tozatto Zago, 
Rodrigo et el. [15] 

2019 
Ensemble 
CNN 

N/A 90 
Ensemble learning improved 
accuracy 

3 
Wejdan L. Alyoubi , 
Wafaa M. Shalash et el. 
[16] 

2020 Hybrid Model 
DIARETDB
1 

93 Hybrid models combining features 

4 
Adarsh Pradhan, 
Bhaskarjyoti Sarmaet el. 
[17] 

2020 VGG16 Messidor-2 94 
VGG16 fine-tuned for 
classification 

5 
Nguyen Q. H., 
Muthuraman R. et el. 
[18] 

2020 
VGG16/ 
VGG19 

APTOS 
2019 

91 Comparison of VGG architectures 

6 
Supriya Mishra, Seema 
Hanchate et el. [19] 

2020 Custom CNN EyePACS 92 
Adaptive preprocessing for 
improved results 

7 
Gangwar and Vadlamani 
[20] 

2021 
Inception-
ResNet 

Kaggle DR 95 
Hybrid Inception-ResNet 
architecture 

8 
Ahsan Bin Tufail ,Inam 
Ullah et el. [21] 

2021 
Ensemble 
Learning 

EyePACS 94 
Ensemble of CNNs for better 
robustness 

9 
Kangrok Oh, Hae Min 
Kang et el. [22] 

2021 Efficient Net Messidor 96 
EfficientNet for lightweight 
detection 

10 
Ling Dai , Liang Wu et el. 
[23] 

2021 Hybrid Model IDRiD 93 
Domain knowledge integration 
with ML 

11 
Shital N. Firke and 
Ranjan Bala Jain [24] 

2021 Custom CNN N/A 90 
Advanced preprocessing 
techniques 

12 
Tassanee Hattiya , 
Kwankamon Dittakan et 
el. [25] 

2021 Hybrid Model 
APTOS 
2019 

92 
Preprocessing for better feature 
extraction 
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13 
Dolly Das, Saroj Kumar 
Biswas et el. [26] 

2022 
Multi-scale 
CNN 

EyePACS 94 
Multi-scale feature extraction 
layers 

14 
Mahmoud Ragab, Bahjat 
Fakieh et el. [27] 

2022 
ResNet + 
DenseNet 

IDRiD 93 
Combined strengths of ResNet and 
DenseNet 

15 
R. Nandakumar, P. 
Saranya et el. [28] 

2022 Custom CNN Messidor 91 
Domain-specific architecture 
improvements 

16 
Muhammad Mohsin Butt 
, D. N. F. wang Iskandar 
et el. [29] 

2022 
Hyperparame
ter 
Optimization 

Kaggle 92 
Hyperparameter tuning improved 
accuracy 

17 
Pitipol Choopong, 
Thanongchai Siriapisith 
et el. [30] 

2022 
Ensemble 
Learning 

APTOS 94 
Balanced dataset with ensemble 
learning 

18 
Usharani Bhimavarapu 
and Gopi Battineni [31] 

2022 
Preprocessin
g + CNN 

EyePACS 93 
Preprocessing enhanced quality 
and performance 

19 
Yasashvini R., Vergin 
Raja Sarobin M. et el. 
[32] 

2022 Hybrid Model IDRiD 95 
Transfer learning enabled better 
results 

20 
Al-Omaisi Asia, Cheng-
Zhang Zhu et el. [33] 

2022 ResNet50 APTOS 92 
Feature selection improved 
detection 

21 
Md. Nahiduzzaman , Md. 
Robiul Islam et el. [34] 

2023 
Ensemble 
Learning 

EyePACS 93 
Diverse training data improved 
the robustness 

22 
Avleen Malhi, Â· Reaya 
Grewal et el. [35] 

2023 
Domain 
Insight + CNN 

Messidor 94 
Clinical insights enhanced model 
design 

23 
G. Kalyani,  
Janakiramaiah et el. [36] 

2023 
Preprocessin
g Pipeline 

IDRiD 93 
Novel pipeline improved 
extraction 

24 
Mark A Chia, Fred 
Hersch et el. [37] 

2024 EfficientNet APTOS 95 
Real-time predictions with 
EfficientNet 

25 
Ankush Jain, Reenav 
Gupta et el. [38] 

2024 
Unified CNN 
Framework 

Kaggle 94 
Multi-model architecture 
enhanced accuracy 

 
Some of the key findings like accuracies, Datasets used and the models and techniques used are  given below as a 
Figures 2-4. 
 

 
Figure 1: The accuracy of the methods and models across papers in Table 1 

 
The bar chart in Figure 1 shows the percentage of 
accuracy in models developed in 25 research papers 
on the identification of diabetic retinopathy. The 

accuracies are between 0.85 and 0.96, with about 
two-thirds of the papers above 0.90. In particular, in 
Paper 10, the highest accuracy of 96% is achieved 
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due to progress in model optimization and 
preprocessing. Papers with slightly lower accuracies, 
namely Paper 1, where accuracy is 85%, or Paper 9 
with 90%, may be attributed to earlier approaches or 
simpler feature extraction. In summary, the 
presented trend in general indicates an increase in 

the quality of DR detection methods and specifically 
in hybrid and ensemble methods in particular, thus 
underlining the increasing reliability of 
computational approaches in the context of DR 
detection. 

 

 
Figure 2: The dataset used in the papers described in Table 1 (from year 2016-2024) 

 

 
Figure 3:  The methods and pretrained model used in the papers in Table 1 

 
Figure 2, Dataset Usage Across Papers illustrates that 
EyePACS [39] is employed in as many papers (5) as 
IDRiD [40]  (4 papers) and APTOS/Messidor [41][42] 
(three papers each). Minor-used datasets are 
DIARETDB1 [43] and Messidor-2 [42] used for 
certain purposes; while for undefined data sources, 
there are “N/A” entries. To this, there is a call for 

more focus on big and highly accredited datasets in 
diabetic retinopathy studies. Figure 3 emphasizes 
what method used across Papers: Custom CNNs and 
Hybrid Models are used in 4 of the papers while 3 of 
the papers have studied Ensemble Learning. Tools 
such as EfficientNet and Preprocessing Pipelines are 
rare but specialty routines meant for increased 
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performance. The importance and wide variety of 
these approaches show the pursuit of the field to 
continually seek new ways of improving the models. 
In conclusion, the above section indicated that DR 
has since the late nineteenth century known to have 
undergone major changes both in diagnosis and 
treatment. In the past years, simple diabetes care was 
given attention and fundus photography facilitated 
fundoscopy in the 1930s. In the 1970s the idea of 
laser photocoagulation was developed as a treatment 
and confirmed by the DRS and ETDRS. The 2000s 
were revolutionized with anti-VEGF injections and 
steroid injections along with a better understanding 
and control of vitrectomy surgeries for proliferative 
cases Detection methods also evolved from CAD 
systems at the beginning of the century up to AI-
based detection with Deep Learning models like CNN 
at the end of the first decade of the current century 
with the same level of accuracy as humans. Most of 
the current research focus is on the combination of 
hybrid models and ensembles; the datasets 
employed include EyePACS [39] and IDRiD [40] for 
more than 90% accuracy. Driving forces are Custom 
CNNs, hybrid models, and EfficientNet techniques 
where scalability and virtually real-time applications 
are key. To this end, the field stays hard at work 
researching gene therapies, stem cell solutions, as 
well as explainable AI; innovations that will fence-
saddle improved patient quality of life. 
 
3. Methodology 
In this work, we use retinal images to design a deep-
learning model for the identification of diabetic 
retinopathy (DR). These images are then pre-
processed by first converting images to the grayscale 
format, followed by enhancing the contrast utilizing 
CLAHE [44], and finally resizing images to a standard 
size to feed into the model. The classification model 
employed in this work is a CNN which is trained on a 
large image dataset and fine-tuned for DR detection. 
The model classifies the retinal images into binary 
classes: The patients are divided into two groups 
according to their DR (Diabetic Retinopathy) status 
or No_DR (non-diabetic). The ensemble learning 
approach is then considered to integrate predictions 
from different CNN models to enhance the prediction 
reliability. The described method is promising and 
may be helpful to support the early identification of 
diabetic retinopathy and contribute to clinical 
practice.  
The approach used in the creation of a diabetic 
retinopathy (DR) detection system is carefully 
broken down into different steps to achieve the most 
credible outcome. This section describes the step-by-
step process of the work from data preprocessing to 
model assessment. 
 
3.1 Dataset Preparation and Preprocessing  

3.1.1 Dataset Description: The Whole experiment 
includes two diabetic retinopathy-specific datasets 
obtained from the benchmark dataset collection 
Kaggle.com.   
Dataset 1 (Fundus Images for DR Study): The First 
dataset [45] consists of 757 color fundus images 
taken from the Optical Discs of patients at the 
Department of Ophthalmology at the Hospital de 
Clínicas, Universidad Nacional de Asunción, 
Paraguay. All these images were taken by using the 
Visucam 500 camera from Zeiss which provides good 
quality retinal images for diagnosis of diabetic 
retinopathy. The images were labeled by three 
expert ophthalmologists to identify and grade both 
NPDR and PDR forms of DR at various levels of 
severity. The classification of images in this dataset is 
as follows: 
• No DR signs (187 images): These images are of 
patients with no evidence of diabetic retinopathy in 
their retinas. 
• Mild (or early) NPDR (4 images): This class 
characterizes the early stage of NPDR with minimal 
alterations in the retina, which are suggestive of early 
pathology. 
• Moderate NPDR (80 images): More evident 
changes are observed at this stage of NPDR, including 
microaneurysms and small hemorrhages, in the 
retina. 
• Severe NPDR (176 images): These images 
illustrate the extent of damage in NPDR including 
large hemorrhages, cotton wool spots, and a 
considerable amount of retinal tissue loss. 
• Very Severe NPDR (108 images): This is the last 
stage of NPDR; it is characterized by extensive retinal 
damage and a very high tendency to develop PDR. 
• PDR (88 images): Proliferative diabetic 
retinopathy in which new and abnormal blood 
vessels are established on the retina, increasing the 
risk of retinal detachment and vision loss. 
• Advanced PDR (114 images): This stage 
constitutes the worst form of PDR; the abnormal 
blood vessels have spread out extensively and 
frequently cause hemorrhages and severe visual 
impairment. 
The first dataset is large and gives a clear picture of 
diabetic retinopathy at different stages which is 
useful for training models to detect and predict the 
stage of DR. These images are particularly useful for 
models intended for the differentiation of NPDR and 
PDR, and to estimate the degree of DR in its stages. 
Dataset 2 (APTOS 2019 Blindness Detection): 
This dataset [41] [46] is a set of Gaussian-filtered 
retinal scan images for Diabetes Retinopathy 
detection. Seized from the APTOS 2019 Blindness 
Detection challenge, it is one of the most popular 
datasets used for retinal disease classification. All the 
images in this dataset are cropped to 224x224 pixels 
to align with the most commonly used pre-trained 
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deep learning models to facilitate the training and 
evaluation stages. The dataset is organized into five 
directories, each corresponding to a distinct severity 
level of DR as follows: 
• 0 - No_DR: These images are of patients with no 
evidence of diabetic retinopathy, that is, normal 
images of the retina with no abnormality. 
• 1 - Mild: This category of images depicts the early 
stage of diabetic retinopathy where there are very 
few alterations in the retina which may not include 
much on the vision. 
• 2 - Moderate: These images reflect a higher level 
of DR development with more evident retinal 
alterations reflecting a moderate level of damage. 
• 3 - Severe: Severe images have very poor images 
in the retina and the damage is usually extensive and 
includes hemorrhages, hard exudates, and other 
signs that produce a severe loss of vision. 
• 4 - Proliferative_DR: This is the last stage of the 
disease which is diabetic retinopathy, in which new 
and abnormal blood vessels are formed in the retina, 
leading to blindness. Proliferative DR is 
characterized by the growth of new blood vessels in 
the retina and may cause very serious complications 
if left untreated.  
All the images in Dataset 2 are further grouped into 
five classes, which describe the progression of 
diabetic retinopathy. The images are crucial for 
developing models to diagnose Diabetic Retinopathy 
and to grade the severity of the disease. 

The variability in both datasets aims at improving the 
generalization of the models trained for diabetic 
retinopathy detection to the benefit of the 
development of computer-aided diagnostic tools in 
ophthalmology.  
 
3.1.2 Dataset Simplification 
For the binary classification task, both Dataset 1 [45] 
and Dataset 2 [46] were simplified into two 
categories. No DR and images that represented the 
presence of diabetic retinopathy (DR) for Dataset 1 
(APTOS 2019 Blindness Detection), images were 
classified in that DR (Advanced PDR, PDR, Very 
Severe NPDR, Severe NPDR, Moderate NPDR) was 
mapped to '1', while Mild NPDR and No DR signs 
were mapped to '0'. Similarly, we labeled the images 
of Dataset 2 of '1' (DR) if the image contained 
Moderate NPDR, Severe NPDR, Proliferative DR, and 
Mild NPDR and '0' (No DR) for No DR signs. This is a 
binary classification in which we only care about DR 
presence or absence and we simplify the problem for 
digitization, easier model training, and testing. The 
data was arranged in directories where each 
subdirectory represented a class of the data. They 
were stored in common formats such as PNG and 
JPEG, so they were compatible with modern 
preprocessing practices and deep learning libraries 
that read such formats while training and evaluating 
their models. Figure 2 and 3 contain sample images 
of Dataset 1 and Dataset 2, respectively.

 
 

    

    
Figure 2: Sample images from Dataset 1 – The upper row shows the ‘DR' class and the Lower row ‘No_DR' class. 

 

 

https://ajprui.com/index.php/ajpr/index


Dileep Kumar Agarwal   

American Journal of Psychiatric Rehabilitation         Expert Opinion Article   

 

Doi: 10.69980/ajpr.v28i4.475 1548-7776 Vol. 28 No. 4  (2025) May 395/410 

 
Figure 3: Sample images from Dataset 2 – The upper row shows the ‘DR' class and the Lower row ‘No_DR' class. 

Image shows are already pre-processed by the Gaussian filter 
 
3.1.3 Preprocessing Pipeline 
Retinal images were prepared for training through 
preprocessing which was essential to improve the 
image quality, remove noise, and make all images of 
similar input dimensions for the models. The 
preprocessing pipeline involved several key steps: 
Contrast Enhancement: The application of Contrast 
Limited Adaptive Histogram Equalization (CLAHE) 
[44] was one of the first steps taken in preprocessing. 
Retinal images that have poor contrast or contain 
varying lighting conditions can make features 
obscure, and CLAHE is an effective technique for the 
enhancement of local contrast, especially on these 
images. Whereas, CLAHE operates on how to divide 
an image into small regions, and amplify the contrast 
of each region independently, eliminating noise 
amplification more than amplifying the features. In 
the end, the clip limit parameter in CLAHE helps 
control the contrast enhancement (to prevent the 
over-enhancement of noise areas). For experiment 2 
with the second dataset, the clip limit was set as 3.0 
and the grid size as 8×8 as hyperparameters. 
Consequently after applying CLAHE the images were 
converted into BGR color space which is a usual 
image space for most of the pretrained models used 
such as those models from ImageNet etc. for training. 
Resizing and Normalization: The images were 
resized to 224 x 224 pixels, a toy size for 
Convolutional Neural Networks (CNNs) that fit 
models like VGG16 and ResNet. Resizing enables us 
to have images of the same size and good enough for 
training a deep-learning model. The pixel values 
were also normalized to be within a consistent range 
so that the input values to the network are in the 
same range thus forcing the model to converge faster 
during training. The pixel values were normalized to 
the range [0, 1] for the proposed method by dividing 
the pixel intensity by 255. 
Data Augmentation: Data augmentation techniques 
were applied to improve the model's generalization 
ability and reduce the risk of overfitting the data [47]. 
Data augmentation synthesizes new variants of the 
initial images to artificially increase the dataset 
diversity. It also simulates variation in real-world 
data, so your model is a better generalizer. The 
augmentation techniques applied in this study 
included: 
❖ Random Shearing: This one transforms the 
image by randomly shifting it along an x or y axis, 
with a shearing range from ±20°. 

❖ Zooming: To facilitate varying scales and 
distances, the images were randomly zoomed in or 
out, 0.8 to 1.2. 
❖ Horizontal Flipping: The model can recognize 
features from different orientations; each image has 
a 50 percent chance of being flipped horizontally. 
The combination of these preprocessing steps 
enabled the training of the deep learning models with 
retinal images that were ready for training and 
helped improve our model's accuracy in classifying 
diabetic retinopathy cases. 
 
3.1.4 Data Splitting  
A stratified sampling approach was used to split the 
dataset into training (70%), validation (20%) and 
testing (10%). This method guaranteed that the 
proportions of samples with DR-positive and DR-
negative were the same across all subsets. 
❖ Training Set: Optimized for model weights. 
❖ Validation Set:  The set is generally used during 
the training process for hyperparameter tuning and 
to prevent overfitting through monitoring of 
performance. 
❖ Test Set: The final evaluation of the model was 
held out. 
 
3.2 Model Architectures for Transfer Learning  
In this paper, a method for the detection of DR is 
proposed and the performance of five state-of-the-
art convolutional neural network architectures for 
image classification tasks, InceptionV3 [48], 
InceptionResNetV2 [49], VGG16 [50], MobileNetV2 
[51], and EfficientNetB0 [52], was assessed. We fine-
tuned and adapted each model to diagnose diabetic 
retinopathy using binary classification problems. To 
benefit from the generic feature extraction 
capabilities, the models were initialized with pre-
trained ImageNet weights, ( 𝐖ImageNet  ) To force the 

network to maintain these capabilities, the base 
convolutional layers were frozen and therefore the 
low-level and middle-level feature maps ( 𝐅base  ) was 
not changed during training. By taking this step, we 
ensured the models could focus their efforts during 
training on optimizing the custom classification 
head, whilst also retaining the robust representation 
learned from ImageNet. Then each base model was 
appended with a custom classification head, ℋcustom , 
to make it possible to perform effective binary 
classification. 
It comprised the following layers: 

https://ajprui.com/index.php/ajpr/index


Dileep Kumar Agarwal   

American Journal of Psychiatric Rehabilitation         Expert Opinion Article   

 

Doi: 10.69980/ajpr.v28i4.475 1548-7776 Vol. 28 No. 4  (2025) May 396/410 

• The results were a global average pooling layer 
that computed the average of spatial dimensions 
over feature maps to transform a tensor from shape 
(𝐻 ×𝑊 × 𝐶) to a vector of size 𝐶, where 𝐻, 𝑊, and 𝐶 
represent height, width, and the number of channels, 
respectively 
• The second layer is a dropout layer, during 
training it randomly sets a part of layer units to zero 
with the rate of 𝑝 = 0.5. It introduced the 
stochasticity that reduces the chances of overfitting. 
• To output a probability score 𝑦 ∈ [0,1] for binary 
classification we can conclude with a dense (fully 
connected) layer with a single neuron and a sigmoid 

activation function (𝜎(𝑧) = 
1

1+𝑒−𝑧
 ).  

To further regularize the model, L2 regularization 
was used for the weights ( 𝐖dense  ) of the dense layer. 
To penalize large value weights, this was added to the 
loss function by a regularization term of the form 
𝜆‖𝐖dense ‖

2, where λ is a parameter controlling the 
regularization strength. However, this approach 
resulted in smoother decision boundaries and better 
generalization performance. 
By this methodical design, these models could be 
specialized to identify diabetic retinopathy, while 
remaining reliant and computationally efficient for 
practical usage in medical imaging. 
 
3.3 Model Training and Ensembling 
3.3.1 Model Training: The training process was 
developed to enhance the performance of the CNN 
models with a view of avoiding over-fitting cases. The 
Adam optimizer, which is a stochastic gradient 
descent method with adaptive learning rate, was 
used in this work. The initial learning rate was set to 
𝛼 = 1 × 10−4 in order to gradually minimize the loss 
function as a learning process.Here, PP stands for the 
true label, PP stands for the predicted probability 
and N stands for the total number of samples in one 
batch 

ℒ(𝑦, 𝑦̂) = −
1

𝑁
∑  

𝑁

𝑖=1

[𝑦𝑖log⁡(𝑦̂𝑖) + (1 − 𝑦𝑖)log⁡(1 − 𝑦̂𝑖)] 

Here, 𝑦𝑖   represents the true label, 𝑦̂𝑖    denotes the 
predicted probability, and 𝑁 is the total number of 
samples in a batch. To avoid overfitting, early 
Stopping was used where validation loss was being 
monitored over several epochs. In the case where 
validation loss did not improve for three consecutive 
epochs epochs ( 𝑡patience = 3 ), training was stopped 

and the weights for the model were rolled back to the 
epoch of the best validation loss. This approach 
ensured that generalization was enhanced through 
non over parameterization of the model. The training 
was performed for at most E=10 epochs since values 
of E higher than that may not contribute significant 
improvements in the learning of the models while 
increasing the computational demand, with a batch 
size of B=32 to ensure adequate learning of features 
from the dataset. 
 
3.3.2 Ensembling: To enhance classification 
efficiency as well as to minimize the model’s 
prejudice, three ensemble methods were 
incorporated to combine the results of the five 
models. The concept of some of the ensembeling 
models are shown below in Figure 4.   
Averaging: The predicted Accuracies  𝑦𝑖  from all 
models were averaged: 

𝑦̂ =
1

5
∑  

5

𝑖=1

𝑦𝑖  

Weighted Averaging: Weights 𝑤𝑖  were assigned to 
each model based on its accuracy 𝐴𝑖 , normalized such 
that ∑𝑖=1

5  𝑤𝑖 = 1. The final weighted  𝑝̂𝑤 was 
computed as: 

𝑦̂𝑤 =∑  

5

𝑖=1

𝑤𝑖𝑦𝑖  

Majority Voting: (𝑦 ∈ {0,1} is predicted as athe 
binatry prediction by each model , so the label of the 
final class 𝑦̂ was determined by the majority vote: 

𝑦̂ = mode({𝑦1, 𝑦2, … , 𝑦5}) 
where 𝑦𝑖  represents the prediction of the 𝑖-th model. 
Stacking: Ensembling or stacking is when you 
combine the predictions from a number of base 
models using a meta model. We consider a set of base 
models 𝑓1, 𝑓2, … , 𝑓𝑚 which give predictions 𝑦̂𝑖  of test 
samples. We then gather the base predictions into a 
matrix 𝑃 ∈ ℝ𝑁×𝑚, with 𝑁 the number of test samples, 
and 𝑚 the number of base models The meta-model 
𝑓meta  is trained on 𝑃 and the true labels 𝑦true  : 
𝑓meta (𝑃) → 𝑦̂meta , where 𝑦̂meta  is the final prediction. 
The meta-model learns to combine the base 
predictions to minimize the loss function ℒ : 𝑓meta =
argminℒ(𝑓meta (𝑃), 𝑦true ). 
The final prediction for each test sample are then 
output as the final prediction by the meta model. We 
reduce bias and variance by optimally combining the 
predictions of base models in this process. 
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Figure 4: The concept of ensembling (a) Weighted Average (b) Voting (c) Stacking 

 
3.4 Evaluation Matrices 
To evaluate the performance of the models and 
ensemble methods several indicators were 
employed. In terms of the major evaluation criteria, 
one concerned the degree of accuracy related to the 
ratio of classified images from the test set. In 
addition, a confusion matrix was used to split our TP, 
FP, TN, and FN [53] detection of the models, 
providing a better understanding of the type of 
classification errors being made. Another useful 
extra measure for comparing the two classes’ 
inferencing capability of the model was the ROC-AUC 
score [54] , an area under the curve of the receiver 
operating characteristic. Other visualizations that 
were called for included other visualizations such as 
the accuracy and loss diagrams to check on the 
models’ convergence. Furthermore, confusion 
matrices, ROC curves, and ensemble performance 
comparison plots were also generated to give an 
overall picture of the success of the models. 
In sections 3.1 to 3.4, the carried out study on the 
construction of the deep learning-based system for 
the diagnosis of diabetes retinopathy (DR) using 
retinal images was done at a certain point to make 
our proposed model operational for a four-step 
process. CLAHE is employed for improving the 
contrast of images followed by resizing to a standard 
dimension of 64X64 pixels in this work. The images 
are classified into DR and No_DR based on the feature 
extraction of a model trained on architectures such 
as InceptionV3, InceptionResNetV2, VGG16, 
MobileNetV2, EfficientNetB0, and fine-tuned CNNs. 
Two benchmark images are considered with CLAHE 
enhanced and augmented by random operation of 
shearing, zooming, and flipping. Accuracy and 
robustness are improved by using ensemble learning 
techniques: majority voting and stacking. 
Subsequently, clinical decisions regarding DR and its 
early detection are to be facilitated by the system.  
 
4. Results and Discussion 
4.1 Experimental Details and Setup 

The whole experiments are done in two phases. For 
Phase One the Dataset1 [45] (explained in section 
3.1.1). Phase two with Dataset 2 is experimenting 
with improving the concept of Phase 1.  It is being 
improved by adding some more refining methods in 
both domains e.g. Data processing side and model 
architecture side. Data preprocessing and 
augmenting techniques are used on the data or 
images side and dropout and regulation techniques 
are used on the model architecture side (explained in 
section 3.2). As already described, there are two 
types of datasets used in the experiments. Initially, 
for the first experiment, Dataset 1 was used and for 
the second experiment, Dataset 2 was used. Classes 
of both datasets are mapped into binary 
classification as the experiment is for diabetic 
retinopathy detection. For Dataset 1, after applying 
binary mapping, the total number of images in each 
class (No DR and DR) is as follows: As for the images, 
191 images are categorized as the no DR class, while 
566 images are categorized as part of the DR class. 
The process performed on these images included 
normalization to ensure all pixel values were in a 
standard range, and this was by rescaling. Then input 
data were divided into training, validation, and test 
sets. For training, 529 images were, for validation – 
152 images and 76 images for testing were selected. 
This information is also presented summarised in 
Table 2 below. 
For Dataset2  [41] [46] after binary mapping, the “No 
DR” class consists of 1805 images and the “DR” class 
of 1877 images. The data preprocessing for this 
dataset was done using a CLAHE (Contrast Limited 
Adaptive Histogram Equalization) transform to 
increase the contrast of the images and normal data 
augmentation. Some of the augmentation techniques 
are rescaling (normalization), the application of 
shear angle transformation, random zooming, and 
image flipping. After preprocessing, the dataset was 
then divided into training, validation, and test data 
sets and it was seen in Table 2 below that the training 
data contained 2, 577 images while the validation set 
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contained 736 images and the test set for the 
experiment contained 369 images. 
 

Table 2: The image distribution over both the datasets and preprocessing information 
S.no Total images in 

each class after 
Binary mapping 

Preprocessing Done on Images Images in Train test 
and validation  

NO_DR DR Train  Valid Test  
Dataset1 191 566 Rescale (Normalize) 529 152 76 
Dataset2 1805 1877 CLAHE transformation 

Data Augmentation: Rescale 
(normalize), Shear angle, 
Random Zoom, Flip image 

2577 736 369 

 
All analyses and experiments were performed using 
the Python 3 programming language, version 3.8, 
running on Google Colab; GPU was enabled for all 
computations, for enhanced speed of data 
processing. To develop and train deep learning 
models, we had to use TensorFlow and Keras as 
those were the tools that allowed it. Image pre-
processing processes were carried out using open 
computer vision (OpenCV) which makes it easier to 
crop, resize, or rotate the input images as required. 
Data management was done using NumPy and 
pandas to ensure that the handling of datasets was 
very flexible. For data display, Matplotlib and 
Seaborn were used to develop various plots and 
charts that would facilitate a simple representation 
of the outcomes. The models were trained on Google 

Colab’s Tesla K80 GPU which comes with 12 GB of 
memory. Such a hardware setup made it easy to 
perform computations and complete training of 
models within the shortest period as well as into 
large data sets and complex operations. 
 
4.3 Result and Discussions  
4.3.1 Results of both Phase of Experiments: 
Phase1 results with Dataset1 
Images of different DR severity levels are categorized 
through a data set comprising ‘Advanced PDR’, 
‘Severe NPDR’, and ‘No DR signs’ amongst others. We 
split the dataset into training, validation, and test sets 
with 529 training images, 152 validation images, and 
76 test images. 

 
Figure 5:  Phase 1 training accuracies for all model 
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Figure 6: Phase Validation accuracies for all model 

 
The graph in Figure 5 shows the training accuracy 
trends of five models (InceptionV3, 
InceptionResNetV2, VGG16, MobileNetV2, and 
EfficientNetB0) across 10 epochs. As InceptionV3 
and MobileNetV2 stay consistent in their 
improvement, they attain the highest accuracy, while 
VGG16 shows no improvement at all. Moreover, we 
can observe similar trends in the validation accuracy 
graph shows as Figure 6, InceptionV3 and 
MobileNetV2 show the highest validation accuracy 

which shows their generalizability. But VGG16's flat 
line of 0.7434 indicates that it didn't leverage itself at 
all during validation, probably because of overfitting 
or bad hyperparameters. In terms of these trends, 
InceptionV3 and MobileNetV2 perform a bit better 
than the rest for this dataset. 
Once the model is trained we test all trained models 
on the test dataset and show the results for all in the 
Figure 7 shown below; 

 
Figure 7: The test data performance graphs for all trained models 
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In Figure 7,  as plot the combined bar graph that 
shows the performance of five models based on 
accuracy and loss. The model with the best metrics 
during the experiment is MobileNetV2 — the highest 
accuracy (92.11%) and the lowest loss (0.2283), 
making it the best-performing model. A strong 
alternative with 89.47% accuracy and a loss of 
0.2600 follows closely. On InceptionV3, we also have 
a good accuracy of 88.16% with a loss of 0.3119 and 
fall behind by a little. On the other side, VGG16 & 
EfficientNetB0 couldn't perform well having an 
accuracy of only 75% & losses of 0.4933, and 0.5623 
respectively. The results indicate that MobileNetV2 is 
the least sensitive and most generalizable, while 

VGG16 and EfficientNetB0 are least suited to the task 
as indicated by their poor performance. Another 
direction is to look at further improving MobileNetV2 
and searching for MobileNetV2's shortcomings that 
cause EfficientNetB0 to not outperform it (which is 
although EfficientNetB0 is a modern architecture). It 
successfully compares the models and it’s clear that 
MobileNetV2 is better. 
Then the best accuracy three models discussed in 
section 3 as proposed work are made more robust by 
the ensembling techniques to serve as a robust 
solution for DR Detection. The results of four 
ensembling techniques (also described in section 3) 
are shown below in Figure XXX. 

 

 
Figure 8: The Ensembling performance of the trained model 

In Figure 8 above, a bar graph has been plotted which 
compares the accuracy of various ensemble methods 
used for model evaluation. The accuracy of each 
previously mentioned ensemble method is depicted 
in one bar. The ensembles were created using three 
pre-trained models: InceptionV3, 
InceptionResNetV2, and MobileNetV2 were 
mobilized. From the results we can see, that the 
Averaging Ensemble, Weighted Average Ensemble, 

and Voting Ensemble all had the highest accuracy of 
92.11%, and the Stacking Ensemble slightly fell 
behind at 89.47%. This makes the visualization of 
averaging-based and voting-based ensembles even 
more clear concerning their use of combined 
strength of these pre-trained models, that they’re 
able to maintain good accuracy even after using them 
together. 
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Figure 9:  Confusion matrices for all four ensembling techniques 

 
Figure 9 above shows all confusion matrices for all 
ensembling methods.  Confusion matrices are used to 
predict ensembling and are used to give detailed 
performance evaluations of classification models by 
showing counts of true positives, true negatives, false 
positives, and false negatives. Each matrix is 
structured to depict, side by side, the actual class 
labels vs the predicted class labels so that one can 
visually see and understand model accuracy, as well 
as misclassification patterns. For example, the model 
in the Averaging Ensemble correctly classified 16 of 
the 27 class 0 instances (true negatives), correctly 
classified 54 of the 78 class 1 instances (true 
positives), and misclassified 3 class 0 instances and 3 
class 1 instances. The Stacking Ensemble had a 
slightly different pattern, with 13 correct 

classifications for class 0, 55 for class 1, and more 
misclassified class 0. The confusion matrices also 
help us to identify bias in the model like it is favoring 
one class over another class. The more counts in 
diagonal cells (true positives and true negatives) the 
better the model. The Voting Ensemble, too, 
performed quite well with only a small amount of 
misclassified pixels, equally as well as the Averaging 
Ensemble, as another example. These matrices are 
critical to understanding where models get tough, 
e.g. differentiating between classes that look similar, 
and begin to shed light on how to target model 
improvement. Below, in the next figure, we show the 
ROC curves for the same data, using the same testing 
techniques. 
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Figure 10: The Receiver Operating Characteristic (ROC) curves are essential when we evaluate a classification 
model because ROC curves show the trade-off between the true positive rate (sensitivity) and the false positive 
rate. An AUC (Area Under the Curve) quantifies the model's discrimination capability, which is how capable it is 

of separating the two classes, with higher values being superior. 
 
The 2x2 layout showed as Figure 10,  the best 
classification performance with the highest AUC of 
0.89 of  Weighted Average and Averaging Ensembles. 
Next was the Voting Ensemble which had an AUC of 
0.88 and fairly preserved the true positive rate for 
various thresholds. Yet the model with Stacking 
Ensemble with AUC 0.82 performed less, which 

means that it misclassified at a higher rate than the 
other models. 
The curves clearly illustrate the effectiveness of 
every model, and thus are critical in choosing the 
best-performing ensemble for deployment. The 
robustness of these methods in attainable reliable 
classification results is demonstrated in this 
visualization. 

4.3.2 Results of both Phase of Experiments: 
Phase1 results with Dataset2 
Dataset 2 comprises 3,682 images, train (2,577), 
validation (736), and test (369). All splits have 
around evenly split labels and the labels are fairly 
evenly split between two classes. As a preprocessing 

step, pixel values were normalized and resized, and 
CLAHE transformation and data augmentation were 
used to optimize the performance of a model. Models 
were trained over 10 epochs. Below is the 
performance summary of training and validation in 
Figures 11 and 12. 
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Figure 11: The training accuracy graph 

 

 
Figure 12: The validation accuracy graph 

 
In Figure 11, the training accuracy graph of 
MobilityNetV2 becomes the best epoch 10 training 
accuracy of 94.57 percent and is almost followed by 
InceptionV3 at 93.67 percent, and 
InceptionResNetV2 at 93.36 percent. Conversely, the 
model with the lowest training accuracy saturates at 
50.68% for EfficientNet B0. MobileNetV2 has the best 
accuracy (92.26%) on our validation dataset (as 
shown in Figure 12) and then InceptionResNetv2 

(92.12%) and InceptionV3 (91.17%) in second and 
third place. Nonetheless, EfficientNetB0 struggled to 
generalize with a best validation accuracy of 50.95%. 
During training, we found that MobileNetV2 
consistently gave good results, while EfficientNetB0 
adapted poorly to learn and generalize. The model is 
then tested on a test dataset and the accuracies of 
these five models are shown in Figure 10 below.  
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Figure 13: Test accuracies by using five models 

 
According to, Figure 13 from the combined bar graph 
above, MobileNetV2 had the highest test accuracy of 
96.11%, followed by InceptionV3 with 94.58% test 
accuracy and InceptionResNetV2 with 94.04% test 
accuracy. Good test accuracy for VGG16 exists also 

for the DR Detection, at 91.06%. For example, such as 
that the test accuracy for EfficientNetB0 was the 
worst overall generalization at 50.95%. The 
ensembling of the trained CNN models by transfer 
learning resulted in Figures 14 – 16.

  
 

 
Figure 14: A bar graph for the test accuracies with three Ensembling methods 

 
 For the given data, we plotted the bar chart as Figure 
14 to show the accuracy of three ensemble methods 
Voting, Average, and Weighted Average. Accuracy 
with the Voting method is 0.9593 which is less than 
the Average (0.9611), and the Weighted Average 
(0.9611) method. Calculating the average of 
predictions seems to benefit performance over 
simple Voting (evenly or weighted). Across different 

batches, we see the computational steps take 
different amounts of time, but the final accuracy 
metrics do not vary. It is also indicated by the given 
results that the Average and Weighted Average 
methods are as effective as the Voting method but 
even slightly better in increasing the model 
prediction accuracy. 
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Figure 15: The Confusion matrixes for three ensemble methods used 

 
The provided Figure 15 depict confusion matrices 
that evaluate the performance of classification 
models under different conditions: An average, 
weighted average, and voting. The value of each 
matrix tells us how many of the actual classes were 
predicted correctly and how many were predicted 
incorrectly by the model. If we consider the weighted 
average matrix, then it turns out that the model 
correctly predicts 172 as Class 0, 183 as Class 1, 9, 
and 5 as the wrong class respectively. Overall the 
performance is good, however, there is a tad bit 
higher error on Class 0. For Class 1 we improved the 

performance, with the average matrix predicting 184 
of the 188 images of Class 1 correctly, whereas only 
4 were wrong; the performance for Class 0 was 
similarly improved, with the average matrix getting 
171 of the 186 images classified as Class 0 correct, 
only 10 wrong. On the other hand, the voting matrix 
achieves the highest accuracy of Class 1 (185 correct, 
3 wrong) and somewhat reduces the accuracy of 
Class 0 (169 correct, 12 wrong). These matrices give 
us an idea about the strength(s) and the (necessary) 
compromises to be made between different 
evaluation methods. 

 

 
Figure 16: Combined ROC Curves for Voting, Average, and Weighted Average Methods 

 
As receiver operating characteristic (ROC) curves are 
a key tool in evaluating classification models; ROC 
curves are nothing but True Positive Rate (TPR) 
plotted against False Positive Rate (FPR) at different 
thresholds. The area under the curve (AUC) is a score 
that measures the model’s ability to tell classes apart 
and most importantly when dealing with imbalanced 

datasets useful for exploring the sensitivity versus 
specificity trade-off. The voting-based classifier 
achieved an accuracy of 95.93% with an AUC of 0.95, 
thereby confirming robust class separation in this 
analysis. The performance was consistent using 
average and weighted average methods with similar 
and excellent accuracies of 96.2 % (AUC 0.95) as well. 
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Despite outperforming voting marginally in 
accuracy, the methods are comparable and are also 
found to be robust in classification tasks. 
 
4..4 Discussion 
By using the results from Phase 1 and Phase 2, we 
show the progressive improvement in the 
classification for detecting diabetic retinopathy. In 
Phase 2, those shortcomings observed from Phase 1 
results, such as data preprocessing, augmentation, 
and model regularization, have been effectively 
addressed with better methodologies. 
Phase 1 Analysis: In Phase 1 we used Dataset 1 
(after binary mapping which included 757 images in 
total), owing to its smaller number of images hence 
the smaller size of the dataset for training. A basic 
preprocessing of rescaling was invoked to normalize 
pixel value, however, there was no advanced 
augmentation applied so the model was limited in its 
ability to generalize. In addition, the absence of 
established strong regularization techniques 
(dropout, L2 regularization) may also explain a large 
amount of overfitting, as demonstrated by VGG16 
and EfficientNetB0’s lower performance. Take 
VGG16 performing flat validation accuracy of 74.34% 
which cannot learn from the data. On the other hand, 
compared to other models, MobileNetV2 was the 
best model in Phase 1 by hitting the test accuracy of 
92.11%, yet there existed scope for improvement, 
particularly in model robustness and 
generalizability. 
Phase 2 Improvements: To work around these 
issues in Phase 2, Dataset 2 was used which was 
much larger (3,682 images each), with a more 
balanced distribution of images among training, 
validation, and test sets. CLAHE was implemented to 
improve image contrast via advanced preprocessing 

and shear transformations, random zooms, and 
flipping of the image were employed to diversify the 
training set. Taking these steps ensured the models 
were getting exposed to a larger variety of data, 
therefore allowing their learning capabilities to 
improve. In connection to the model architecture 
paper dropout layers were added to help prevent 
overfitting (by randomly deactivating neurons in 
training). Finally, L2 regulation was additionally 
applied to the weight of the models to penalize 
complex models and render model weights smaller 
and less complex (hence, more generalizable). 
Improvements to this reduced performance on all 
metrics and improved by a significant amount. 
Comparative Analysis: MobileNetV2 continued to 
beat the other models in Phase 2 with 96.21%, 
InceptionV3 with 94.58%, and InceptionResNetV2 
with 94.04%. We also obtained improvement using 
VGG16 which now scored 91.06%, which indicates 
that augmentations and regularization help VGG16 to 
get rid of overfitting problems VGG16 was prone to 
previously. However, EfficientNetB0 was the 
weakest performer with an accuracy of only 50.95%; 
it was not well-engineered for this dataset. The final 
ensemble methods were run on the three best-
performing models (MobileNetV2, InceptionV3, and 
InceptionResNetV2) to improve the performance. 
The averaging ensemble and the weighted average 
achieved the best accuracy of 96.11% and the voting 
ensemble of 95.93%. Using confusion matrices we 
were able to show decreases in misclassification 
rates, especially with the weighted average method, 
which tended to maintain performance for both 
classes. ROC curves for these ensembles were even 
more reliable, with all performing an AUC of 0.96, 
meaning excellent discrimination capability.  

 

 
Figure 17: The Accuracy comparision  of proposed Model withnthe some of the in reference number  [14-

37] 
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To compare the accuracy of various methods from 
references 14 - 37 (sky blue) with the proposed 
ensemble method (Weighted average, orange). The 
accuracies of the methods from the references are in 
the range of 85% and 96% with most in the 90–95% 
range. Their Weighted Average ensemble method 
yields an accuracy of 96 percent – the highest 
achieved by any of the individual methods. This 
shows the efficacy of the ensemble process to use the 
strengths from individual models. The visualization 
makes clear the advantage of the proposed method 
over most existing methods. 
 
5. Conclusion 
Systematic improvements in diabetic retinopathy 
(DR) detection are successfully demonstrated by the 
study in two experimental phases. In Phase 1, pre-
trained CNN models were proven to be capable of un-
presupposing information contained in images, 
MobileNetV2 had the highest test accuracy at 
92.11%. However, they have some limitations like 
inadequate preprocessing, no augmentation 
technique, and overfitting for example in VGG16 and 
EfficientNetB0. In Phase 2, with a bigger, slightly 
more balanced Dataset2, and a range of 
preprocessing such as CLAHE and a full set of data 
augmentation methods, these shortcomings were 
addressed. Dropout and L2 regularization were also 
used to improve the model's robustness. These 
enhancements led to surprisingly big performance 
gains: MobileNetV2 achieves the highest test 
accuracy at 96.11%. The performance was further 
strengthened with the ensemble methods, coming to 
an accuracy of 96.21% and AUC of 0.95, which proves 
their reliability in DR detection.These results build 
on future work, which can include the development 
of domain-specific model architectures that are more 
suited to DR detection, as well as extending the 
framework for multi-class classification to 
differentiate DR severity levels. We can add GANs to 
include synthetic data and explain the AI technique 
through XAI. To satisfy the real-world deployment in 
clinical settings, we tested on various datasets and 
optimized the lightweight model (MobileNetV2) for 
the edge devices. We also explore more advanced 
ensemble techniques, including stacking meta-
learning, to obtain further performance 
improvement. Additionally, cross-domain validation 
can verify the generalization of these methods to 
other medical imaging tasks, such that this approach 
can be made scalable and adaptable for other 
healthcare applications. The finalized DR detection 
systems will be robust, scalable, and interpretable 
and can be effectively deployed in clinical and 
resource-constrained environments. 
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