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Abstract  
Background: 
Gingivitis is one of the most prevalent periodontal diseases worldwide, and early, accurate diagnosis is critical for 
preventing progression to irreversible periodontitis. While conventional diagnostic indices such as the Gingival 
Index (GI) and Plaque Index (PI) are widely used, they are inherently subjective and examiner-dependent. Recent 
advances in artificial intelligence (AI) offer promising alternatives for objective, scalable, and efficient periodontal 
diagnostics. 
Aim: 
To compare the diagnostic accuracy, sensitivity, and consistency of conventional clinical methods with an Artificial 
Neural Network (ANN)-based AI model in evaluating gingival health across a large population. 
Materials and Methods: 
An in vivo comparative study was conducted on 1,000 patients aged 14 to 75 years at a tertiary dental care 
institution. Gingival condition was evaluated using the GI and PI, and scored for color, contour, interdental papilla 
form, and presence of calculus. Standardized intraoral images were captured and analyzed using a trained ANN 
model comprising four specialized sub-networks. Diagnostic scores from AI and clinical methods were statistically 
compared using t-tests, ANOVA, correlation matrices, and reliability testing. 
Results: 
Conventional methods diagnosed gingivitis in 100% of patients with perfect inter-parameter consistency 
(Cronbach’s α = 1.0). The ANN model demonstrated high sensitivity (99.8%) and good internal reliability 
(Cronbach’s α = 0.784), particularly in detecting interdental papilla (accuracy: 74.91%) and calculus (accuracy: 
80.47%). However, the AI system underperformed in identifying gingival color changes (accuracy: 70.78%; 
consistency: 63.42%) and showed weaker correlation in its provisional classification (r = 0.044). Significant 
statistical differences (p < 0.001) were observed across all diagnostic categories between AI and conventional 
methods. 
Conclusion: 
AI-assisted gingivitis detection demonstrates high sensitivity and consistency, especially for morphological 
parameters, and holds strong potential as an adjunctive tool in periodontal diagnosis. However, limitations in 
detecting early color changes and calculus suggest the need for algorithmic refinement and dataset expansion. AI 
models, when optimized and integrated with clinical workflows, may serve as scalable, objective complements to 
traditional diagnostic methods in both routine and community-based periodontal care. 
 
Keywords: Gingivitis, Artificial Intelligence, Periodontal Diagnosis, Neural Network, Dental Imaging, Gingival 
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Introduction 
Gingivitis is recognized as one of the most common 
and earliest forms of periodontal disease, affecting 
over 75% of the global population and ranking just 
behind dental caries in terms of prevalence. Its 
clinical and epidemiological importance stems from 

both its ubiquity and its potential for progression 
into more severe periodontal conditions. 
Epidemiological data suggests that nearly 87.4% of 
adults between 35 and 44 years of age exhibit 
gingival bleeding—one of the earliest signs of 
gingival inflammation—underscoring the silent yet 
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widespread nature of this disease and the need for 
effective prevention, early diagnosis, and 
intervention strategies¹. Gingivitis is characterized 
by inflammation confined to the gingival tissues 
without affecting the alveolar bone and periodontal 
ligament, making it a reversible condition if managed 
promptly. However, if left untreated, it may evolve 
into periodontitis—a destructive, chronic condition 
leading to the irreversible breakdown of supporting 
periodontal structures and eventual tooth loss. 
The pathogenesis of gingivitis begins with the host’s 
immune response to the accumulation of dental 
plaque, a complex biofilm composed of bacteria and 
salivary components². This microbial accumulation 
at the gingival margin triggers an inflammatory 
cascade characterized by increased vascular 
permeability, vasodilation, and recruitment of 
immune cells, particularly neutrophils, to the gingival 
sulcus. Clinically, this inflammatory response 
manifests as erythema, edema, and bleeding on 
probing, while at the microscopic level, distinctive 
changes are observed in both epithelial and 
connective tissues. Disruption of the junctional 
epithelium is one of the earliest detectable changes, 
with cell junctions loosening to allow immune cells to 
infiltrate the gingival crevice⁴. Neutrophils form a 
temporary defensive barrier but also contribute to 
tissue damage through the release of reactive oxygen 
species and proteolytic enzymes⁵. Electron 
microscopy reveals additional structural alterations, 
including desmosomal detachment, cytoplasmic 
vacuolization, degeneration of keratinocytes, and 
fragmentation of the basal lamina⁶. In the connective 
tissue, macrophages and neutrophils secrete matrix 
metalloproteinases (MMPs), which enzymatically 
degrade collagen fibers—crucial for maintaining 
gingival integrity—while fibroblasts exhibit 
metabolic distress, impairing tissue repair 
mechanisms⁶. 
Vascular changes further compound the pathology of 
gingivitis. Dilated capillaries, thinning of endothelial 
basement membranes, and increased permeability 
result in the extravasation of plasma proteins and 
leukocytes, contributing to tissue edema and the 
characteristic reddened appearance of inflamed 
gingiva⁷. These pathological and ultrastructural 
features collectively correspond with the hallmark 
clinical signs—redness, swelling, bleeding on 
probing, and loss of stippling—reinforcing the 
diagnosis of gingivitis as a reversible inflammatory 
condition limited to superficial gingival layers⁸. 
Despite its reversibility, gingivitis often progresses 
insidiously and asymptomatically, which delays 
patient recognition and intervention, further 
stressing the need for timely and accurate diagnostic 
methods. 
Prevalence data highlights gingivitis as a persistent 
public health burden. More than 42% of adults aged 

30 and above show signs of gingival inflammation, 
while about 8% suffer from more advanced 
periodontal conditions⁹. The prevalence increases 
significantly with age, affecting nearly 60% of 
individuals aged 65 years and older, and is further 
complicated by systemic conditions such as diabetes 
mellitus and HIV, which increase susceptibility to 
gingival and periodontal disease¹². Determining the 
exact burden of gingivitis remains challenging due to 
inconsistent diagnostic criteria across populations. 
Nonetheless, its presence is evident from early 
childhood, affecting 9–17% of children aged 3 to 11, 
and rising steeply in adolescence to 70–90%¹⁰˒¹². 
Globally, the trends mirror U.S. data, establishing 
gingivitis as an endemic oral health issue 
necessitating effective diagnostic and preventive 
strategies, particularly for vulnerable and 
underserved populations. 
Traditionally, gingivitis is diagnosed using 
conventional clinical tools such as periodontal 
probing, the Silness and Lo e Gingival Index, and the 
Plaque Index. These indices assess clinical signs like 
redness, swelling, and bleeding while quantifying 
plaque deposits¹¹˒¹³˒¹⁴. Periodontal probing, often 
performed with a Williams probe, evaluates pocket 
depth and gingival integrity. Although clinically 
valuable, these methods are inherently subjective 
and require professional expertise, making them less 
effective for large-scale or community-level 
screenings¹⁵. Furthermore, diagnostic consistency is 
often compromised due to variations in examiner 
interpretation, and access to these tools remains 
limited in low-resource settings. Financial and 
infrastructural barriers also deter many from seeking 
regular dental evaluations, especially in developing 
regions. 
In response to these limitations, artificial intelligence 
(AI), particularly machine learning (ML) and deep 
learning (DL) algorithms, have emerged as promising 
tools for enhancing the objectivity and scalability of 
gingivitis diagnosis. AI-driven systems, especially 
those employing Artificial Neural Networks (ANNs), 
automate feature recognition in intraoral images, 
reducing human error and diagnostic variability 
while significantly improving time efficiency¹⁶˒¹⁷. 
These models can analyze subtle gingival changes—
such as color alterations, contour deviations, and 
papillary disruptions—that may elude traditional 
examination, thereby facilitating earlier detection 
and better treatment outcomes¹⁷. Moreover, AI 
allows for large-scale data processing, enabling 
community-level screening programs that are 
particularly beneficial in resource-constrained areas 
where access to specialized dental care is limited¹⁸. 
Importantly, AI models continue to evolve with 
expanding datasets, enhancing their diagnostic 
precision and adaptability in real time—a feature 
static clinical guidelines cannot offer¹⁹. Studies have 
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shown that current AI-based systems exhibit 
diagnostic accuracies ranging from 0.47 to 1.00, with 
≥0.90 considered clinically acceptable²⁰⁻²². Several 
notable implementations have demonstrated the 
effectiveness of AI in dental diagnostics. For instance, 
the 2011 Fuzzy Expert System by Vijay K. and Anjali 
M.²⁴, ANN-based models for periodontitis detection 
by Georgios P. and Keiso T. in 2014²⁰, and the use of 
Extreme Learning Machines (ELMs) by Wen Y. et al. 
in 2018²⁵, collectively validate AI’s capacity to 
surpass conventional techniques in efficiency and 
reliability. 
Thus, the convergence of periodontal science with 
artificial intelligence opens a new chapter in 

gingivitis management. It offers a pathway toward 
standardized, rapid, and accessible diagnostic 
models that address the limitations of traditional 
clinical methods. In this evolving landscape, the 
adoption of AI not only enhances diagnostic precision 
but also democratizes oral healthcare by extending 
diagnostic reach across socioeconomic and 
geographic barriers. The following sections of this 
article will delve deeper into the comparative 
diagnostic performance of traditional methods and 
ANN-based models, underscoring the transformative 
potential of AI in the early detection and 
management of gingivitis. 

 
Material & Methodology  
 

FIGURE 1: Waldent® 5MP CMOS intraoral camera (Waldent Innovations Pvt. Ltd., India) 
Intraoral image was obtained using the Waldent® 5MP CMOS intraoral camera (Waldent Innovations Pvt. 
Ltd.,India), a diagnostic device featuring a high-resolution 5-megapixel CMOS sensor and built-in LED 

illumination for enhanced intraoral visualization. The device supports real-time imaging and is used for accurate 
documentation and assessment of gingival health. 

 
 
This  comparative in vivo investigation was 
conducted  over a span of one and a half years in the 
Department of Periodontology and Oral 
Implantology at NIMS Dental College and Hospital, 
Jaipur, Rajasthan, following institutional ethical 
clearance (Proposal No: IEC/P-240/2023) and has 
been registered under CTRI/2025/07/090873 for 
CTRI ( clinical trial registration of India. The primary 
objective of the study was to assess and compare the 
diagnostic efficacy of conventional clinical indices 
and a machine learning-based artificial intelligence 
(AI) model for the detection of gingivitis. A total of 
1,000 systemically healthy participants were 
recruited from the outpatient department through 
purposive sampling. Eligibility criteria included 
individuals aged between 14 and 75 years, 
irrespective of gender, possessing a minimum of 24 
natural teeth and exhibiting clinical features 
consistent with gingivitis. Subjects presenting with 
systemic illnesses, those on chronic 
pharmacotherapy, individuals younger than 14 years, 
and those diagnosed with periodontal diseases other 

than gingivitis—such as periodontitis or necrotizing 
ulcerative conditions—were excluded to eliminate 
confounding variables. The sample size was 
calculated using a two-proportion formula, taking 
into account previously reported prevalence rates 
(Group 1: 45.98%, Group 2: 52.34%), with a 
statistical power of 80% and an alpha level of 0.05, 
yielding 500 participants per group. 
 
All enrolled patients underwent comprehensive 
periodontal examinations using standardized 
diagnostic armamentarium, including a Williams 
periodontal probe and mouth mirror. Gingival 
inflammation was assessed clinically through two 
well-established indices: the Gingival Index (Silness 
and Lo e, 1963) and the Plaque Index (Lo e and 
Silness, 1964). The Gingival Index was applied at four 
sites per tooth—mesial, distal, buccal, and lingual—
using a scoring scale ranging from 0 (normal) to 3 
(severe inflammation), while the Plaque Index 
evaluated the extent of supragingival plaque on a 
similar scale. Based on cumulative scores, each case 

https://ajprui.com/index.php/ajpr/index


Dr Panshul Kharche   

American Journal of Psychiatric Rehabilitation         
Expert Opinion Article   

 

Doi: 10.69980/ajpr.v28i5.633 1548-7776 Vol. 28 No. 5 (2025) August 1228/1234  

was categorized as mild, moderate, or severe 
gingivitis. To complement clinical assessments, 
standardized intraoral photographs were captured 
using a Waldent 5MP CMOS autofocus intraoral 

camera under consistent lighting conditions, 
ensuring uniformity in image acquisition across 
subjects.(fig 1,2)  
 

 
FIGURE 2: Armamentarium used includes 5MP CMOS Waldent Intraoral Camera, Artificial Neural Network 

Modelling algorithm 

 
 
In parallel, the AI-assisted diagnostic modality 
utilized a pre-trained Artificial Neural Network 
(ANN) model specifically designed for gingival health 
assessment. The ANN had been developed using a  

 
dataset of 4,000 annotated intraoral images 
representing a spectrum of gingival conditions 
ranging from healthy to severely inflamed tissues, as 
well as sites exhibiting dental calculus. 

 
FIGURE 3: This collage presents a collection of clinical intraoral photographs depicting varying degrees of 

gingival health and inflammation. The images were used to train and validate an artificial intelligence 
model for the diagnosis of chronic generalized gingivitis. 

 
 
Segmentation of the gingival region was performed  
using Canny edge detection and Otsu’s thresholding 

techniques to isolate the region of interest (ROI) with 
high precision.     
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Subsequent feature extraction included HSV (Hue, 
Saturation, Value) transformation for color analysis, 
Fourier descriptors for contour profiling, and Gray 

Level Co-occurrence Matrix (GLCM) modeling for 
texture characterization, along with 3D surface 
curvature  analysis. 

 
FIGURE 4: Input layer for the prediction of label red. 

 
 
The ANN framework comprised four specialized sub-
models: Color_Model.h5 (for detecting erythema and 
color deviation), Contour.h5 (for analyzing gingival 
architecture), Interdental_Papilla.h5 (for assessing 
papillary form and recession), and Calculus.h5 (for 
identifying the presence of supragingival calculus). 
Each model's output contributed to a final diagnostic 
decision via a Softmax classifier. A case was classified 
as “gingivitis present” if at least one of the four 
parameters was flagged as abnormal. Conversely, a 
“healthy” classification was assigned only if all model 
parameters indicated normal gingival features. 
All collected data, both clinical and AI-generated—
were compiled in Microsoft Excel and subjected to 
statistical analysis using IBM SPSS Statistics 

software. The normality of data distribution was 
assessed using the Shapiro–Wilk test. Depending on 
distribution characteristics, inter-group 
comparisons were conducted using independent t-
tests or Mann–Whitney U tests, while one-way 
ANOVA and Kruskal–Wallis tests were applied for 
comparisons across multiple groups. Intra-group 
analyses were performed using the Wilcoxon Signed-
Rank test and Friedman’s test. Categorical data were 
evaluated using the Chi-square test. To determine the 
relationship between conventional and AI-based 
diagnostic parameters, Pearson’s or Spearman’s 
correlation coefficients were calculated as 
appropriate. 

 
FIGURE 5: Criteria for AI-Based Classification of Gingival Health 
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Internal consistency and reliability of the ANN 
model’s output were evaluated using Cronbach’s 

alpha. A p-value of less than 0.05 was considered 
statistically significant across all analyses. 

 
Results 

 
FIGURE 6: Gender Distribution 

 
 

A total of 1,000 patients aged between 14 and 75 
years participated in the study, of whom 834 (83.4%) 
were male and 166 (16.6%) were female. Based on 
conventional periodontal examination using the 
Gingival and Plaque Indices, 733 individuals (73.3%) 
were classified with mild gingivitis and 267 (26.7%) 
with moderate gingivitis. With respect to plaque 
status, 953 patients (95.3%) exhibited “fair” oral 
hygiene, while only 42 (4.2%) had “good” and 4 
(0.4%) had “poor” plaque control (Figure 6).  

The diagnostic performance of conventional clinical 
methods (CM) was compared with an artificial 
intelligence (AI)-based diagnostic model across key 
gingival parameters: color change, contour 
alteration, interdental papilla morphology, and 
presence of calculus. Each parameter was scored 
using a standardized binary system (1 = presence; 0 
= absence), and data were collated for clinical and AI 
assessments.

 
Table 1:  Intergroup Comparison Of Parameters 

 
 

Conventional clinical methods detected gingivitis in 
all patients (100%), yielding a diagnostic sensitivity 
of 100%. The AI-based method correctly identified 
gingivitis in 998 of the 1,000 subjects (99.8%), failing 
to detect it in only 2 cases. Mean diagnostic scores for 
each parameter using conventional methods were 

uniformly 1.000 ± 0.000, while the AI-based system 
exhibited variability across parameters (Table 1). 
The highest mean score was bserved for color change 
(0.947 ± 0.224), followed by interdental papilla 
condition (0.861 ± 0.346), contour (0.777 ± 0.416), 
and calculus (0.670 ± 0.471). The total AI diagnostic 
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score (TOTALAI) was 4.252 ± 0.771, in contrast to the 
maximum possible conventional diagnostic score of 
5.000 ± 0.000. The combined diagnostic index 
(TOTALCMAI), integrating both CM and AI 
assessments, had a mean of 9.252 ± 0.771 (Figure 7). 
Independent t-tests revealed statistically significant 
differences (p < 0.001) between AI and CM across all 

diagnostic parameters. The most pronounced 
discrepancy was noted in calculus detection, where 
AI performance lagged significantly behind clinical 
probing (mean = 0.670 vs. 1.000; p < 0.001). ANOVA 
further confirmed inter-group differences, 
highlighting variability in AI's sensitivity to different 
clinical signs. 

 
                  FIGURE 7 : Inter Item Correlation Heatmap 

 
 
Correlation analysis using a matrix heatmap (Figure 
8) revealed that AI-based calculus detection 
(CALCULUS2) demonstrated the strongest 
correlation with the total AI score (r = 0.601) and the 
composite diagnostic score TOTALCMAI (r = 0.601), 
suggesting its central influence in AI-generated 
diagnoses. Moderate correlations were observed for 
contour (r = 0.566) and interdental papillae (r = 
0.511). In contrast, PROVISIONAL2 (the AI model’s 
binary diagnostic output) showed a weak correlation 
with both TOTALAI and TOTALCMAI (r = 0.044), 
indicating limited diagnostic contribution. 
Reliability testing of the AI model demonstrated good 
internal consistency, with Cronbach’s alpha 
calculated at 0.784 (fig 7). Additionally, Friedman’s 
ANOVA revealed statistically significant differences 
among the AI-generated parameters (χ² = 5900.301, 
df = 6, p < 0.001), with a high Kendall’s coefficient of 
concordance (W = 0.973), reflecting strong internal 
agreement among AI variables. 
A comparative evaluation of accuracy and 
consistency metrics for conventional and AI models 
across the four diagnostic parameters is presented in 
terms of color change detection, the conventional 
method achieved 98.34% accuracy and 92.15% 
consistency (95% CI: 75.61–81.07% and 85.32–
98.98%, respectively), while AI yielded 70.78% 
accuracy and 63.42% consistency (95% CI: 49.92–

55.64% and 72.15–94.69%). Similar trends were 
observed in contour analysis, where AI performance 
(accuracy = 79.32%, consistency = 76.89%) fell short 
of conventional assessment (accuracy = 82.49%, 
consistency = 89.72%). For interdental papilla 
evaluation, AI achieved 74.91% accuracy and 88.23% 
consistency, whereas conventional methods 
recorded 87.13% and 95.28%, respectively. The most 
notable discrepancy was in calculus detection, with 
AI reaching only 80.47% accuracy and 78.93% 
consistency, compared to 95.28% and 89.04% under 
clinical examination. Overall, the AI-based model 
demonstrated high sensitivity and promising 
internal consistency, particularly in identifying gross 
features such as color and papilla alterations. 
However, it exhibited reduced accuracy and broader 
confidence intervals relative to conventional 
methods, especially in detecting more nuanced 
features like gingival contour and calculus 
deposition. These findings highlight the strengths of 
AI in scalable screening but also underscore its 
current limitations in clinical precision and 
reliability, warranting further refinement of training 
datasets, algorithmic optimization, and multimodal 
data integration to enhance diagnostic robustness in 
periodontal care. 
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Discussion 
This study provides a comprehensive comparison 
between conventional clinical indices and artificial 
intelligence (AI)-based diagnostic models in the 
evaluation of chronic generalized gingivitis, 
analyzing key clinical parameters including gingival 
color, contour, interdental papilla integrity, and 
calculus presence. The use of Artificial Neural 
Networks (ANNs) in diagnostic workflows 
represents a promising shift toward automated and 
reproducible periodontal assessment. While 
conventional tools such as the Gingival Index (GI) and 
Plaque Index (PI) remain foundational, their 
subjectivity and examiner dependency often 
compromise diagnostic consistency and scalability 
[21]. In contrast, the AI model in this study 
demonstrated high sensitivity and internal 
consistency, indicating its potential utility as a 
scalable adjunct in early gingivitis detection. The GI 
and PI, originally developed by Silness and Lo e, have 
historically served as reliable measures for gingival 
inflammation, with previous studies reporting 
sensitivities of 91.2% and accuracies approaching 
85.6% [1]. However, their performance is often 
limited in early disease detection due to high inter-
examiner variability and reliance on visual and tactile 
cues [18]. This limitation was evident in our study, 
wherein conventional methods exhibited perfect 
diagnostic scores across all evaluated parameters, 
while AI-based assessments demonstrated 
variability-most notably in detecting calculus and 
color changes. In terms of diagnostic sensitivity, the 
AI model correctly identified gingivitis in 99.8% of 
cases, closely aligning with the 100% sensitivity 
achieved via conventional clinical probing. This level 
of performance mirrors findings by Wen et al. and 
Gao et al., who demonstrated AI sensitivity ranging 
from 85% to 90% using convolutional neural 
network (CNN) architectures [18], [19]. Notably, the 
AI model in our study outperformed many prior 
models in parameter-specific sensitivity, particularly 
in interdental papilla assessment (mean score: 0.861 
± 0.346) and contour analysis (0.777 ± 0.416). 
Despite these advances, the AI system demonstrated 
its weakest performance in detecting color 
alterations (mean = 0.947), but with 63.42% 
consistency-likely due to the limitations imposed by 
varying intraoral lighting, pigmentation differences, 
and image quality. This mirrors the challenges 
described by Morales et al. and Chau et al. [20], who 
noted broad confidence intervals and reduced 
precision in color-based inflammation detection, 
which illustrates comparative diagnostic accuracy 
across gingival parameters, clearly showing the 
disparity in AI performance in detecting subtle 
inflammatory changes such as erythema, compared 
to anatomical features like papillary loss [20]. 
Correlation analysis further clarified the AI model’s 

parameter influence. AI-based detection of calculus 
exhibited the highest correlation with the total AI 
score (r = 0.601), reinforcing its dominant weight in 
the AI model’s final prediction. However, the AI's 
binary diagnosis showed only weak correlation (r = 
0.044), indicating a potential mismatch between 
isolated feature detection and composite diagnostic 
classification. These inconsistencies emphasize the 
need for improved feature integration and decision-
layer optimization within ANN structures. 
Encouragingly, the AI model exhibited robust internal 
reliability. Cronbach’s alpha was calculated at 0.784, 
indicating good internal consistency across the four 
evaluated parameters. Furthermore, Kendall’s 
coefficient of concordance (W = 0.973), derived from 
Friedman’s ANOVA, confirmed strong agreement 
among the AI model’s subcomponents, suggesting a 
stable diagnostic framework despite its 
underperformance in specific domains. 
Comparative performance metrics revealed that 
conventional methods consistently outperformed AI 
in both accuracy and consistency. For example, 
conventional assessment of gingival color change 
achieved 98.34% accuracy and 92.15% consistency, 
while AI scored 70.78% and 63.42%, respectively. 
Similarly, AI detection of calculus, while approaching 
80.47% accuracy, fell significantly short of the 
95.28% accuracy attained through clinical probing. 
These disparities reiterate the superiority of tactile 
and visual examination in identifying hard and soft 
deposits, particularly when calculus is minimal or 
embedded subgingivally. Our findings also align with 
recent research advocating for ensemble learning 
approaches and multi-modal data integration to 
overcome the limitations of single-layer ANN systems 
[22]. Studies by Liu et al. and Alalharith et al. 
demonstrated that models such as DenseNet and 
Faster R-CNN can enhance detection of complex 
features, though they still suffer from reduced recall 
when applied to generalized gingivitis cases [23]. The 
gap between AI consistency and accuracy, 
particularly in real-world clinical settings, reflects 
ongoing challenges related to image standardization, 
data imbalance, and feature abstraction [24]. 
In sum, the ANN model in this study demonstrated 
high diagnostic sensitivity and onsistency, 
particularly for structural features such as contour 
and papilla form. However, it underperformed in 
detecting color changes and calculus, both of which 
remain critical indicators in early gingivitis 
diagnosis. While AI holds significant promise in 
supplementing clinical periodontal assessment, our 
findings highlight the importance of continued 
refinement in model training, inclusion of diverse 
datasets, and the integration of advanced 
visualization tools such as Grad-CAM to improve 
interpretability [25]. Furthermore, standardized 
imaging protocols and the adoption of explainable AI 
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(XAI) frameworks may enhance clinical trust and 
translational potential [26]. 
 
Conclusion 
This study highlights the superior diagnostic 
accuracy and consistency of conventional methods 
over AI-based systems in detecting gingivitis. While 
clinical indices such as the Gingival Index and Plaque 
Index remain the gold standard, the ANN model 
demonstrated high sensitivity (99.8%) and strong 
internal reliability, particularly in assessing 
morphological features like interdental papillae and 
contour. However, its reduced accuracy in detecting 
calculus and early color changes underscores current 
limitations in AI specificity and clinical reliability. 
The null hypothesis was rejected, confirming a 
statistically significant difference between the two 
diagnostic modalities. AI, though not yet a 
replacement for clinician expertise, shows strong 
potential as an adjunct tool—capable of enhancing 
screening efficiency, standardizing assessments, and 
expanding access to care. With continued refinement, 
expanded training datasets, and integration into 
hybrid diagnostic workflows, AI can evolve into a 
valuable asset in the future of periodontal 
diagnostics. 
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