Face Forward: Redefining Aesthetic Dentistry with 3D Scanning Intelligence

Dr. Bhushan Bangar^{1*}, Dr. Monika Bageshwar², Dr. Yogeshwari Bhise³, Dr. Shital Wagh⁴, Dr. Susheen Gajare⁵, Dr. Shashi Patil⁶

- 1*Professor & P.G Guide (Maharashtra institute of dental science and research, Latur)
- ²P.G Student (Maharashtra institute of dental science and research, Latur),
- ³P.G Student (Maharashtra institute of dental science and research, Latur),
- ⁴Reader & P.G Guide (Maharashtra institute of dental science and research, Latur),
- ⁵HOD & P.G Guide (Maharashtra institute of dental science and research, Latur),
- ⁶ Professor & P.G Guide (Maharashtra institute of dental science and research, Latur)

Abstract:

The rapid evolution of digital technologies has significantly transformed dental practices, particularly in prosthetic and aesthetic treatments. While intraoral scanners and CAD/CAM systems are now standard tools, the integration of facial scanners marks a new frontier in digital dentistry. These devices capture detailed 3D representations of the face, offering valuable data for diagnosis, treatment planning, and patient communication.

Keywords: Face-scan, Digital workflow, Digital dentistry, Virtual patient, Scanning technologies

Introduction:

The adoption of CAD/CAM systems in dentistry has streamlined prosthetic workflows and reduced clinical chair time. Tools like intraoral scanners (IOS), cone beam computed tomography (CBCT), and digital photography have enabled clinicians to construct comprehensive virtual models of their patients—commonly referred to as "virtual patients ." One persistent challenge, however, lies in accurately orienting the maxilla in 3D space relative to facial reference lines. Traditional computerized facebow systems, while effective, are often expensive and complex. Facial scanners offer a promising alternative by capturing extraoral structures and integrating them into the digital workflow. Recent developments, including smartphone applications, have made this technology more accessible and userfriendly.

Applications of Facial Scanners: 1. Virtual Patient Records

Facial scanners can digitize extraoral records, replacing analog facebows and diagnostic wax-ups. By merging face scans, intraoral scans, and CBCT data using landmark-based superimposition (e.g., dentition), clinicians can create a 3D virtual patient. This model supports treatment simulation, enhances communication, and facilitates non-invasive documentation.

While current systems struggle to integrate DICOM, STL, and OBJ files into a single platform, researchers like Joda and Gallucci have proposed the development of a 4D virtual patient—incorporating facial movements and virtual articulation data. Techniques such as stereophotogrammetry and reference-point scanning are being explored to improve accuracy and usability.

2. Maxillofacial Prosthesis

Combining facial scanners (e.g., 3dMDface) with intraoral scanners (e.g., TRIOS 4) enables precise design of prostheses for patients with facial defects. This method captures both facial topography and fine surface textures, allowing for accurate reproduction using 3D printing—often eliminating the need for manual sculpting.

3. Obstructive Sleep Apnea (OSA)

OSA is a serious condition linked to airway obstruction during sleep. While polysomnography remains the diagnostic gold standard, facial scanners have emerged as a supplementary tool. Algorithms based on 3D facial scans can help predict OSA severity. Additionally, custom CPAP masks designed using facial scan data offer improved comfort and reduced air leakage.

Types of Facial Scanners:

JPes of fueral seamlers.		
Type	Description	Examples
Phone-based	Handheld apps using smartphone cameras (e.g., TrueDepth)	Bellus3D DentalPro, Qlone
Handheld	Portable scanners moved around the face to build a 3D image	MetiSmile by SHINING 3D
Desktop	Stationary units with multiple cameras and lighting for high-resolution scans	RAYFace, Obi Scanner, VECTRA H2

Each type offers distinct advantages. Phone-based scanners are convenient, handheld devices are mobile and chairside-friendly, while desktop scanners provide superior accuracy and depth.

Working Mechanism:

- 1. **Image Acquisition**: The scanner captures 3D data using structured light or stereophotogrammetry.
- 2. **Data Processing**: Software compiles and corrects the scan to form a detailed facial model.
- 3. **Integration**: Facial scans are aligned with intraoral and CBCT data to create a virtual patient.
- 4. **Treatment Planning**: Clinicians use the model to assess symmetry, plan procedures, and simulate outcomes.
- 5. **Patient Communication**: 3D simulations help patients visualize results and improve treatment acceptance.

Discussion:

Digital dentistry continues to evolve, with facial scanners playing a pivotal role in enhancing diagnostic precision and patient care. These noncontact devices capture realistic 3D facial models quickly and efficiently. When combined with CAD software, they facilitate interdisciplinary collaboration and improve treatment predictability—especially in complex prosthodontic cases.

Traditional 2D methods are gradually being replaced by 3D workflows, allowing for more accurate and comprehensive data integration. While challenges remain—such as software compatibility and scan accuracy—ongoing research and technological advancements are addressing these limitations.

Future Scope:

- **Improved Accuracy**: AI-driven algorithms will enhance recognition in varied conditions.
- **Security Applications**: Facial scanning may replace physical IDs in high-security environments.
- **Consumer Integration**: Use in smartphones, AR/VR, and wearables will become more common.
- **Healthcare Innovations**: Facial analysis may aid in diagnosing genetic disorders and mental health conditions.

Limitations:

- **Technical Challenges**: Lighting, facial changes, and pose sensitivity can affect accuracy.
- **Privacy Concerns**: Risks include surveillance, data misuse, and lack of transparency.
- Security Risks: Vulnerabilities include spoofing and data breaches.

Conclusion:

Facial scanners are reshaping the landscape of digital dentistry. Whether handheld, desktop, or smartphone-based, each offers unique benefits. As

AI and machine learning continue to advance, these tools will become even more integral to precise treatment planning and patient care. Choosing the right scanner depends on the specific needs and philosophy of each dental practice.

Conflict of Interest:

The authors declare no conflict of interest related to the content, research, or technologies discussed in this article. No financial support, sponsorship, or commercial affiliations influenced the preparation or presentation of this work. All opinions and evaluations presented are based solely on academic research and clinical observations.

References:

- Salloum R. Revolutionizing dentistry: Exploring the potential of facial scanners for precise treatment planning and enhanced patient outcomes. The Journal of Prosthetic Dentistry. 2024 Apr 15.
- Ye H, Ye J, Wang S, Wang Z, Geng J, Wang Y, Liu Y, Sun Y, Zhou Y. Comparison of the accuracy (trueness and precision) of virtual dentofacial patients digitized by three different methods based on 3D facial and dental images. The Journal of Prosthetic Dentistry. 2022 Apr 1.
- Lee JD, Nguyen O, Lin YC, Luu D, Kim S, Amini A, Lee SJ. Facial scanners in dentistry: an overview. Prosthesis. 2022 Nov 15;4(4):664-78.
- Antonacci D, Caponio VC, Troiano G, Pompeo MG, Gianfreda F, Canullo L. Facial scanning technologies in the era of digital workflow: A systematic review and network meta-analysis. Journal of prosthodontic research. 2022;67(3):321-36.
- Granata S, Giberti L, Vigolo P, Stellini E, Di Fiore A. Incorporating a facial scanner into the digital workflow: A dental technique. The Journal of Prosthetic Dentistry. 2020 Jun 1;123(6):781-5.
- Asutay HC, Turkyilmaz I, Benli M, Martinez JL.
 Transforming smiles using an intraoral scanner
 and face scan application on smartphone. Journal
 of dental sciences. 2022 Jul;17(3):1413.
- Jindanil T, Xu L, Fontenele RC, Perula MC, Jacobs R. Smartphone applications for facial scanning: A technical and scoping review. Orthodontics & Craniofacial Research. 2024 Jun 6.
- Zhao YJ, Xiong YX, Wang Y. Three-dimensional accuracy of facial scan for facial deformities in clinics: a new evaluation method for facial scanner accuracy. PloS one. 2017 Jan 5;12(1): e0169402.