Effectiveness of Vaccination Programs in Reducing the Incidence of Pediatric Meningitis: A Systematic Review

¹⁻ Marwa Hussein Alhag, ²⁻ Norah Abdullah Alhweish, ³⁻ Ghaida Mohammed Bakhit Mohammed Ahmed, ⁴⁻ Yara Yahya Alihafez Albargi, ⁵⁻ Fatimah Dirayn Mohammad Almarhabi, ⁶⁻ Hosham Omer Mohamed Malik, ⁷⁻ Malaz Mahjoub Abdelrahman Adam, ⁸⁻ Eitadal Ali Albalal Abdelbagi, ⁹⁻ Ragia Abd Al Raaouf Mohamed Youssef, ¹⁰⁻ SAHAR MAMOUN ABDALLA MAHGOUB, ¹¹-Samiyah ahmad alhuzali, ¹²⁻ OSMAN HASSAN OSMAN ABDALRHEEM, ¹³-Ghadeer Ahmed mahdi

¹Position: Pediatric Consultant Workplace: Maternity and Children Hospital (MCH), Hail, Saudi Arabia

²pediatric

³Medical intern

⁴Position: Medical Intern Workplace: -

⁵Position: Resident Doctor – Pediatric ER Workplace: Maternity and Children Hospital (MCH), Tabuk, Saudi Arabia

⁶Position: Pediatrician Workplace: Prince Sultan Military Medical City, Riyadh, Saudi Arabia

⁷Position: Pediatrician Workplace: Sidra Medicine, Qatar

⁸Position: Pediatrician Work of place: Nizwa Tertiary Hospital Sultanate Oman

⁹Work place .. Gama hospital Speciality .. pediatrics registrar

¹⁰MCH ARAR NICU GPMaternity hospital

¹¹pediatric

12 FAMILY MEDICINE . NORTHREN AREA ARMED FORCES HOSPITAL

Background

Pediatric meningitis is a life-threatening condition caused by inflammation of the protective membranes covering the brain and spinal cord, often resulting from bacterial or viral infections. Children, particularly infants and young children, are among the most vulnerable populations due to their underdeveloped immune systems. The disease poses a significant global burden, leading to high morbidity, long-term neurological complications, and mortality, especially in low- and middle-income countries (Ohm et al., 2022).

Historically, before the widespread availability of vaccines, meningitis outbreaks in pediatric populations were common and often devastating. Common causative agents such as *Haemophilus influenzae* type b (Hib), *Streptococcus pneumoniae*, and *Neisseria meningitidis* accounted for the majority of bacterial meningitis cases. These pathogens have since become key targets in pediatric immunization programs worldwide (Talbird et al., 2022).

With the development and implementation of conjugate vaccines targeting these organisms, there has been a notable shift in the epidemiology of pediatric meningitis. Countries that have introduced Hib, pneumococcal, and meningococcal vaccines into their national immunization schedules have reported substantial reductions in disease incidence. However, the extent of vaccine effectiveness can vary depending on vaccine coverage, type, dosing

schedule, and local epidemiological conditions (McMillan et al., 2021).

In addition to direct protection, vaccination has also been shown to contribute to herd immunity, reducing transmission among unvaccinated individuals. This has further amplified the impact of vaccination programs in preventing meningitis among children. Nonetheless, emerging serotypes not covered by current vaccines and inconsistent implementation across regions pose ongoing challenges (Ladhani et al., 2020).

Despite clear progress, pediatric meningitis remains a public health concern in many parts of the world. Gaps in vaccine access, parental hesitancy, logistical barriers, and surveillance limitations affect the overall success of immunization programs. In some regions, delayed vaccination or incomplete immunization schedules reduce the potential benefits of available vaccines (Villena et al., 2023).

Furthermore, the effectiveness of meningitis vaccines can be influenced by coexisting health conditions, such as malnutrition or HIV, which are more prevalent in certain settings. These factors complicate efforts to evaluate vaccination outcomes, especially in heterogeneous populations with diverse healthcare infrastructures (Evellyn do Macedo et al., 2018).

In recent years, several countries have expanded their immunization programs to include newergeneration vaccines and boosters, aiming to improve protection against evolving strains. However, a

¹³Pediatric senior registrar

comprehensive assessment of the real-world impact of these programs on pediatric meningitis incidence remains necessary for guiding policy decisions (Alderson et al., 2021).

Therefore, evaluating the overall effectiveness of vaccination programs in reducing pediatric meningitis through a systematic review offers an evidence-based approach to understand current achievements, limitations, and opportunities for improvement. This research is particularly timely and important for informing global health strategies and optimizing pediatric immunization efforts (Bloom et al., 2023).

Problem Statement

Despite the global implementation of pediatric vaccination programs targeting major meningitis-causing pathogens, pediatric meningitis continues to cause significant health burdens, particularly in regions with limited healthcare infrastructure. There is a need for a comprehensive synthesis of existing evidence to evaluate how effectively vaccination programs have reduced the incidence of pediatric meningitis and to identify factors influencing their success or failure across different settings.

Research Questions

- 1. How effective have vaccination programs been in reducing the incidence of pediatric meningitis globally?
- 2. Which types of meningitis vaccines (e.g., Hib, pneumococcal, meningococcal) have demonstrated the highest effectiveness in pediatric populations?
- 3. What factors influence the effectiveness of vaccination programs in preventing pediatric meningitis?
- 4. Are there regional differences in vaccination impact on meningitis incidence among children?

Research Hypotheses

- H1: Vaccination programs significantly reduce the incidence of pediatric meningitis.
- H2: Conjugate vaccines (Hib, PCV, and meningococcal) are associated with a greater reduction in pediatric meningitis cases compared to polysaccharide vaccines.
- H3: High vaccine coverage and adherence to the recommended immunization schedule enhance the effectiveness of meningitis vaccination programs.
- H4: Socioeconomic and regional disparities influence the outcomes of vaccination programs in reducing pediatric meningitis incidence.

Research Aim

To systematically evaluate the effectiveness of vaccination programs in reducing the incidence of pediatric meningitis and identify the factors that contribute to or hinder their success across different regions and healthcare settings.

Research Objectives

- 1. To assess the overall impact of pediatric meningitis vaccination programs on disease incidence.
- 2. To compare the effectiveness of different types of meningitis vaccines used in pediatric populations.
- 3. To examine the influence of vaccine coverage, schedule adherence, and healthcare infrastructure on vaccine effectiveness.
- 4. To identify regional disparities and challenges in the implementation of vaccination programs targeting pediatric meningitis.
- 5. To provide evidence-based recommendations for improving the design and delivery of pediatric meningitis vaccination strategies globally.

Methodology Study Design

This study will adopt a **systematic review design** to critically evaluate existing literature on the effectiveness of vaccination programs in reducing the incidence of pediatric meningitis. Systematic reviews are a robust method for synthesizing evidence across multiple studies, enabling the identification of patterns, effectiveness outcomes, and gaps in the literature. The review will follow the PRISMA 2020 (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines to ensure methodological transparency and reproducibility.

Eligibility Criteria

Studies will be selected based on the **PICOS** framework:

- **Population (P):** Children aged 0–18 years who have received vaccines targeting meningitis-causing pathogens.
- Intervention (I): Vaccination programs including Hib, pneumococcal (PCV), and meningococcal vaccines.
- **Comparison (C):** Pre-vaccine implementation periods or unvaccinated cohorts where applicable.
- **Outcomes (0):** Incidence rates of clinically or laboratory-confirmed pediatric meningitis.
- **Study Design (S):** Randomized controlled trials (RCTs), cohort studies, case-control studies, and population-based surveillance studies. Reviews, case reports, editorials, and animal studies will be excluded.

Only studies published in English from the year 2000 onward will be included, to reflect the era of modern conjugate vaccine programs. Studies conducted in both high-income and low- and middle-income countries will be eligible.

Information Sources

A comprehensive literature search will be conducted using the following electronic databases:

- PubMed/MEDLINE
- Scopus
- Web of Science
- Cochrane Library
- EMBASE

In addition, gray literature such as reports from the World Health Organization (WHO), Centers for Disease Control and Prevention (CDC), and national ministries of health will be reviewed. Manual searches of reference lists from included studies will also be performed to identify additional relevant articles.

Search Strategy

The search strategy will be developed using relevant MeSH terms and keywords. Examples of search terms include: "pediatric meningitis," "childhood meningitis," "vaccination," "immunization," "Haemophilus influenzae," "pneumococcal vaccine," "effectiveness," "incidence," and "program evaluation."

Boolean operators (AND, OR) will be used to combine keywords, and truncations will be applied to include all possible variations of search terms. The search will be adapted to fit each database's syntax.

Study Selection Process

All identified records will be imported into a citation management software such as **EndNote** or **Zotero** to remove duplicates. Two independent reviewers will screen titles and abstracts for eligibility. Full-text reviews will then be conducted to determine inclusion based on the predefined criteria. Disagreements between reviewers will be resolved through discussion or consultation with a third reviewer.

A PRISMA flow diagram will be used to document the selection process, including the number of records identified, screened, excluded, and included.

Data Extraction

A standardized data extraction form will be developed using Microsoft Excel or Covidence software. The following data will be extracted from each included study:

- Study title and author(s)
- Year of publication
- Country and setting
- Study design
- Sample size and population characteristics
- Type of vaccine(s) administered
- Coverage rate and schedule
- Duration of follow-up

- Reported incidence/prevalence of meningitis
- Outcome measures and effect sizes (e.g., risk reduction, incidence rate ratio)

Two reviewers will extract data independently, and any discrepancies will be resolved by consensus.

Quality Assessment

The methodological quality and risk of bias of included studies will be assessed using appropriate tools:

- Cochrane Risk of Bias Tool for randomized controlled trials
- Newcastle-Ottawa Scale (NOS) for observational studies

Each study will be graded as low, moderate, or high risk of bias. Studies with high risk will still be included but their influence on the results will be considered in the sensitivity analysis.

Data Synthesis and Analysis

Data will be synthesized narratively and, where possible, quantitatively. A meta-analysis may be conducted using **RevMan** or **Stata** software if sufficient homogeneous data are available. Pooled incidence rate ratios (IRR) or relative risk (RR) with 95% confidence intervals will be calculated.

Heterogeneity will be assessed using the I² statistic. Subgroup analyses will be performed based on:

- Type of vaccine (Hib vs. PCV vs. meningococcal)
- Geographic region (high-income vs. low-income countries)
- Age group
- Vaccine coverage rates

If meta-analysis is not feasible due to data heterogeneity, a narrative synthesis will summarize the evidence in themes and trends.

Sensitivity Analysis

A sensitivity analysis will be conducted by excluding studies with a high risk of bias or those with small sample sizes to test the robustness of the results. The analysis will help determine whether study quality significantly impacts the findings of the review.

Ethical Considerations

As this study involves the analysis of previously published data, no ethical approval is required. However, all efforts will be made to properly cite original sources and avoid any form of plagiarism or data misrepresentation.

Limitations

This review may be limited by publication bias, variations in study quality, and differences in how meningitis outcomes are reported. In addition, exclusion of non-English studies may limit the generalizability of findings.

References

- 1. Ohm, M., Hahné, S. J. M., van der Ende, A., Sanders, E. A. M., Berbers, G. A. M., Ruijs, W. L. M., van Sorge, N. M., de Melker, H. E., & Knol, M. J. (2022). Vaccine Impact and Effectiveness of Meningococcal Conjugate **ACWY** Vaccine Serogroup Implementation in the Netherlands: Nationwide Surveillance Study. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America, 74(12), 2173-2180. https://doi.org/10.1093/cid/ciab791
- 2. Helena De Oliveira, L., Jauregui, B., Carvalho, A. F., & Giglio, N. (2017). Impact and effectiveness of meningococcal vaccines: a review. *Revista panamericana de salud publica = Pan American journal of public health*, 41, e158. https://doi.org/10.26633/RPSP.2017.158
- 3. McMillan, M., Chandrakumar, A., Wang, H. L. R., Clarke, M., Sullivan, T. R., Andrews, R. M., Ramsay, M., & Marshall, H. S. (2021). Effectiveness of Meningococcal Vaccines at Reducing Invasive Meningococcal Disease and Pharyngeal Neisseria meningitidis Carriage: A Systematic Review and Meta-analysis. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America, 73(3), e609–e619. https://doi.org/10.1093/cid/ciaa1733
- 4. Ladhani, S. N., Andrews, N., Parikh, S. R., Campbell, H., White, J., Edelstein, M., Bai, X., Lucidarme, J., Borrow, R., & Ramsay, M. E. (2020). Vaccination of Infants with Meningococcal Group B Vaccine (4CMenB) in England. *The New England journal of medicine*, 382(4), 309–317. https://doi.org/10.1056/NEJMoa1901229
- 5. Stefanelli, P., & Rezza, G. (2016). Impact of vaccination on meningococcal epidemiology. *Human vaccines & immunotherapeutics*, 12(4), 1051–1055. https://doi.org/10.1080/21645515.2015.11085
- Evellyn do Macedo, L., Ferreira, V. M., Feitosa, C. A., Nunes, A. M. P. B., Campos, L. C., & Sáfadi, M. A. P. (2018). Impact of meningococcal C conjugate vaccination programs with and without catch-up campaigns in adolescents: Lessons learned from Bahia, Brazil. Human vaccines & immunotherapeutics, 14(5), 1131–1137. https://doi.org/10.1080/21645515.2017.14156
- Alderson, M. R., Welsch, J. A., Regan, K., Newhouse, L., Bhat, N., & Marfin, A. A. (2021). Vaccines to Prevent Meningitis: Historical Perspectives and Future Directions. *Microorganisms*, 9(4), 771. https://doi.org/10.3390/microorganisms9040771

- 8. Bloom, D.E., Bonanni, P., Martinón-Torres, F. et al. Meningococcal Disease in the Post–COVID-19 Era: A Time to Prepare. Infect Dis Ther 12, 2649–2663 (2023). https://doi.org/10.1007/s40121-023-00888-w
- 9. Villena, R., Safadi, M. A., Gentile, Á., Pujadas, M., De la Maza, V., George, S., & Torres, J. P. (2023). Epidemiology of Meningococcal Disease in Four South American Countries and Rationale of Vaccination in Adolescents from the Region: Position Paper of the Latin American Society of Pediatric Infectious Diseases (SLIPE). Vaccines, 11(12), 1841. https://doi.org/10.3390/vaccines11121841
- 10. Talbird, S. E., Carrico, J., La, E. M., Carias, C., Marshall, G. S., Roberts, C. S., Chen, Y. T., & Nyaku, M. K. (2022). Impact of Routine Childhood Immunization in Reducing Vaccine-Preventable Diseases in the United States. *Pediatrics*, 150(3), e2021056013.

https://doi.org/10.1542/peds.2021-056013