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Abstract

The detection of underground locations and hidden pipelines is essential in subsurface engineering, utility
mapping, and geophysical exploration. Conventional techniques dependent on manual analysis of Ground
Penetrating Radar (GPR) data are labor-intensive and susceptible to human error. The current study introduces an
automated methodology applying the YOLOv8 deep learning model for real-time item detection in GPR photos. A
highly selected and annotated dataset obtained from the Roboflow Universe platform, comprising 1,474 GPR
images annotated with bounding boxes for underground gaps and pipelines, was utilized for model training and
assessment. The dataset included various subsurface circumstances, such as differences in soil type, moisture
content, and buried depth, which enhanced the model's generality. Preprocessing involved image standardization
and augmentation methods, including flipping, rotation, and brightness modifications to enhance adaptability. The
trained model exhibited outstanding accuracy, attaining a precision of 0.90, a recall of 0.95, and a mean Average
Precision (mAP50) of almost 0.95. The results show the efficacy of the YOLOv8 model in precisely detecting
subsurface anomalies, presenting significant opportunities for enhancing the efficiency and reliability of GPR data
analysis. This study focuses on the efficacy of open-source datasets and effective object detection algorithms in
automating necessary tasks in underground infrastructure assessment.

Keywords: YOLOVS8, Ground Penetrating Radar (GPR), Roboflow Universe, identifying subsurface, annotated.

1. Introduction

The identification and comprehension of
underground structures like voids, cavities, and pipes
is very important for geotechnical engineering, urban
planning, disaster management, and for maintaining
infrastructure in good condition. Since metropolitan
areas develop rapidly and underground utilities
become increasingly complicated, the requirement
for exact, quick and easy and non-invasive detection
methods has never been greater. Ground Penetrating
Radar (GPR) is one of the most used geophysical
technology because it can take high-resolution
pictures of the ground without destroying it. GPR
sends high-frequency electromagnetic pulses into the
ground and data the signals which bounce back from
buried objects or changes in material attributes [1].
Analysts then consequently these reflections into
radar grams, which they use to figure out what is
underground.

Although it operates, manually evaluating GPR data
can be difficult easy to supply many of causes.
Applying radar reflections effectively is additionally
difficult work and takes a lot of time, but it also
demands a lot of knowledge in the field, especially

when the signals are noisy, low-contrast, or
undefined. It becomes even more effectively to
understand because the soil's composition, moisture
content, and depth of items can all change. These
problems make it hard for GPR to be used in real time
and on an extensive scale in infrastructure projects
[2].

The application of artificial intelligence (Al),
especially deep learning-based computer vision
algorithms, has developed into a groundbreaking way
of analyzing GPR data in sequence to find solutions
within these problems [3]. Deep learning models have
been shown to be quite effective at learning complex
patterns and implementing what's they've learned to
other datasets. Object detection is an essential part of
computer vision  which allows machines
automatically identify and locate particular objects in
an image. Which makes it perfect to identify
subsurface anomalies.

The YOLO (You Only Look Once) series has grown into
the standard for real-time detection because of its
unification architecture and fast inference speed.
YOLOvS, the most recent version, has a number of
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important improvements over earlier versions. These
are some of the new features: a decoupled detection
head for better classification and localization, an
upgraded CSPDarknet-based backbone, improved
spatial pyramid pooling for multi-scale feature
aggregation, and an optimized anchor-free
architecture. These new features make it easier for
YOLOv8 to find small, irregular, and overlapping
objects with better accuracy, which is very useful in
the noisy and complicated world of GPR illustrations
[4].

The present research applies YOLOv8 to
automatically find underground locations and
pipelines in GPR illustrations. The primary objective
is to create a strong detection model trained on
properly labeled radargrams so that the difficult and
error-prone task of manual interpretation can be
done automatically [5].

Key components of this research include:

e Pre-processing of GPR images to reduce noise
and improve feature visibility.

e Annotation and augmentation of a GPR dataset
containing diverse underground structures across
varying conditions.

e Model training and fine-tuning using YOLOvS,
with optimization of hyper parameters for GPR-
specific characteristics.

e Evaluation of model performance using
standard metrics such as Precision, Recall, F1-score,
Intersection over Union (IoU), and mean Average
Precision (mAP).

e Comparative analysis with alternative object
detection models (e.g., YOLOV5, SSD, Faster R-CNN) to
establish the efficacy of YOLOvS.

The objective of this research is to develop a real-time,
scalable, and accurate detection system that enhances
operational efficiency and decision-making in
subsurface exploration through the use of deep
learning to analyze GPR data. The outcome may
impact the way underground utilities and anomalies
are represented and observed that could be an
important tool in managing smart city infrastructure,
archeological analysis, and citizen security [6].

2. Literature Review

The utilization of Ground Penetrating Radar (GPR) in
underground exploration has improved considerably
in recent decades. Ground Penetrating Radar (GPR), a
non-invasive and high-resolution geophysical
method, has been widely used for detecting
underground utilities, archeological features, voids,
and anomalies across various soil conditions. The
interpretation of GPR illustrations is a complex and
specialized work, frequently constrained by noise,
signal attenuation, and operator variability. This
difficulty has resulted in an increasing quantity of
research dedicated to the automation of GPR data
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interpretation = through  sophisticated  signal
processing and machine learning techniques.

2.1Traditional
Interpretation
Earlier methodologies for GPR data interpretation
mainly depended on signal processing and pattern
recognition techniques. Time-frequency analysis
techniques such as Short-Time Fourier Transform
(STFT), Wavelet Transform, and Hilbert-Huang
Transform (HHT) have been used to enhance feature
extraction from noisy radar data. These methods,
while successful in controlled environments,
encountered difficulties in generalisation across
different circumstances due to substantial variation in
subsurface compositions and reflection patterns [7].
Furthermore, traditional machine learning methods,
including Support Vector Machines (SVM), K-Nearest
Neighbors (KNN), and Random Forests, were used for
the classification of GPR signatures. C. Zhang et al.
(2000) illustrated the utilization of neural networks
for the detection of hidden objects in radar data.
Although these methods demonstrated promise, they
frequently necessitated manually constructed
features and substantial preprocessing, hence
constraining their scalability and robustness in
practical applications.

Approaches to GPR Data

2.2Emergence of Deep Learning in GPR
Applications

The emergence of deep learning has brought about a
notable transformation in the analysis of GPR data.
Convolutional Neural Networks (CNNs) have shown
remarkable effectiveness in extracting hierarchical
features from images. Investigations conducted by
Zhang et al. (2018) and Ma et al. (2020) utilized CNNs
for classifying GPR B-scans, resulting in impressive
accuracy in identifying underground pipes and voids.
The models minimized the need for manual feature

engineering and demonstrated improve
generalization across various soil types and object
depths [8].

However, initial approaches applying CNNs mainly
concentrated on classification tasks and had been
deficient in accurately localizing objects within
radargrams. This limitation caused an exploration of
object detection frameworks that are capable of
simultaneously classifying and localizing
underground features.

2.30bject Detection Techniques in GPR

Object detection models, including Faster R-CNN, SSD
(Single Shot MultiBox Detector), and YOLO (You Only
Look Once), have been used in different areas such as
medical imaging, autonomous driving, and remote
sensing. Their application to GPR is comparatively
younger yet increasing fast.

Faster R-CNN was among the initial frameworks
investigated for GPR-based object detection. Although
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it provided high precision, its two-stage construction
rendered it computationally prohibitive for real-time
applications.

e YOLOv3 and YOLOv5 have demonstrated effective
performance in detecting underground utilities
within radargrams. Their single-shot architecture
facilitates rapid inference, an essential element in
field applications. Wang et al. (2021) employed
YOLOv5 to accurately locate underground pipes,
illustrating that deep object detectors surpass
conventional approaches in both precision and
efficiency [9].

2.4Advancements with YOLOv8

YOLOvVS8, the most recent iteration in the YOLO series,
features multiple architectural improvements such as
a decoupled head, anchor-free detection, and a more
efficient backbone (C2f + CSP Dark net). These
enhancements facilitate superior recognition of small
and overlapping objects, commonly found in GPR
data, where targets frequently manifest as hyperbolic
reflections amid clutter [10].

Currently, research explicitly utilizing YOLOv8 for
GPR images is rare, emphasizing a gap that this work
intends to fill. Benchmark results from other domains,
such as COCO and Pascal VOC, indicate that YOLOv8
surpasses previous models in mean Average Precision
(mAP) and inference time, positioning it as a
promising opposition for subsurface feature
recognition [11].

Although previous research has demonstrated the
promise of deep learning for GPR interpretation, some
problems persist:
e Limited access to annotated GPR datasets for the
development of robust models. e Variable
performance under diverse soil and environmental
conditions.

e Lack of research particularly addressing YOLOv8-
based detection for GPR.

This study attempts to address these limitations by
creating and assessing a YOLOv8-based object
detection model specifically designed for identifying
underground holes and pipes in GPR images. It further
enhances the increasing database of knowledge at the
convergence of deep learning and geophysical
imaging.

3. Method

3.1Database

We used the Roboflow Universe dataset to train and
test the YOLOv8 model for automatically finding
subterranean holes and pipelines in Ground
Penetrating Radar (GPR) images. Roboflow Universe
is a popular platform that gives users access to a wide
range of annotated datasets that are useful for
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different applications in computer vision [12].
The selected gathering includes radar images with
bounding boxes that show underground voids and
pipelines in different environmental and subsurface
conditions, such as variances in soil type, moisture
level, and depth of its burial. This variety makes the
model better at applying to a wider number of real-
world GPR situations.

Key characteristics of the dataset include:

¢ Number of Images: 1,474 GPR images.

e Annotations: Each image contains labeled
bounding boxes for identifying underground voids
and pipelines.

e Image Format and Resolution: All images were
standardized to a resolution of 640x640 pixels,
conforming to YOLOv8'’s input requirements.

e Data Augmentation Techniques: To improve
model robustness and mitigate overfitting, several
augmentation techniques were applied, including
horizontal and vertical flipping, rotation, and
brightness adjustments.

Using the Roboflow Universe dataset gave us access to
a carefully sourced and varied collection of high-
quality GPR images, which were very helpful in
creating a strong and accurate detection model. This
foundation is very important for the development of
automated and real-time subsurface exploration
techniques.

3.2 Preprocessing

A systematic dataset of Ground Penetrating Radar
(GPR) images has been put together such that YOLOv8
could automatically find underground voids and pipes
[13]. The dataset has images labeled from multiple
batches, such train_batch0.jpg, train_batch1.jpg, and
so on, up to train_batch5162.jpg shown in figure 1 (a),
(b) (c). The images show various conditions below the
surface. We used the YOLO format to label each image,
which means that each object (void or pipeline) has a
bounding box and a class label which passes with it.
We examined each annotation by the same time to
make sure that they were correct and consistent. The
dataset was put up in the way that YOLOvV8 needs it,
with different categories for training and validation
images and labels [14]. It generated a configuration
file called data.yaml that set up the structure of the
dataset, such as the number of classes and their
names. This preparation made it possible to train the
YOLOv8 object detection model quickly and
accurately, which made it possible to find
underground things in GPR images in real time.
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Figure 1. (a) Train_BatchO, (b) Train_Batchl & (c) Train_Batch5162
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Normally indicating the presence of underground
abnormalities including pipelines or voids, the
provided figures show the performance of the
YOLOv8 model in detecting hyperbolic signatures
within Ground Penetrating Radar (GPR) B-scan
images [15]. Figures 2 (a), (b), and (c) of the training
batches show a range of hyperbolic reflections
manually annotated that include various depths,
amplitudes, and noise from surrounding conditions.
Figure 2 (a) and (b), on the additional present, show
the inference outputs of the model, consequently
emphasizing its capacity to identify hyperbolas across
several GPR environment with various levels of
confidence. These detections are tagged with
probability ratings (e.g., Hyperbola 0.7), consequently
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reflected the accuracy of the model in exactly spotting
the hyperbolic pattern [16]. Figure 2 (d) through (f)
also opposed projected bounding boxes on the
validation set against ground truth annotations.

The consistency and accuracy of the model in applying
to unknown data are shown by the visual alignment of
expected boxes with the real labels. The excellent
contrast of discovered hyperbolas against noisy
backgrounds confirms even more the durability of the
model under demanding real-world subsurface
imaging settings [17]. These results verify the ability
of YOLOv8 for real-time, automated hyperbola
detection in GPR applications aimed at subsurface
feature analysis and underground utility mapping.
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Figure 2. (a), (b) & (c) Range of Hyperbolic Reflections & Detecting Hyperbolic Signatures, (d to f) Projected
Bounding Boxes on the Validation Set

The spatial and dimensional features of the annotated
objects in the Ground Penetrating Radar (GPR)
dataset are revealed by the visual study of label
distribution as showed in the image below. Indicating
a single object class Hyperbola with over 1,000
annotations, the top-left histogram indicates the total
amount of labeled instances. demonstrating a
significant amount of annotations around the central
portion of the image, the top-right plot overlays all
bounding boxes on a normalized image plane, which
indicates that subsurface features typically exist at the
central region in the dataset [18]. Further verifying to
the central bias of target features in GPR scans, the
bottom-left scatter plot indicates the distribution of

TR

Figure 3. Labels

et

the x and y center coordinates of the bounding boxes,
which are basically overflowing around the center (x
= 0.5,y %~ 0.5). Most boxes have moderate dimensions,
frequently arranged within a width range of 0.1-0.3
and height range of 0.2-0.4, hence the bottom-right
plot indicates the distribution of bounding box width
and height. During training, constant scaling helps
model stability. These label distribution patterns
implemented together in order verify the consistency
of the dataset and provide the required information
for best anchor box settings and model performance
efficiency improvements.
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Figure 4. Labels Correlogram

For the annotation of subsurface features in the
Ground Penetrating Radar (GPR) dataset, the
correlogram visualization provides a complete
statistical summary of the distribution and
relationships among the normalized bounding box
attributes x, y, width, and height. With a large
concentration around the center of the image plane (x
= 0.5, y = 0.5), the diagonal histograms indicate that
the x and y center coordinates are normally
distributed, therefore indicating a spatial bias in
which most features are centrally located [19]. The
width and height distributions are right-skewed;
most bounding boxes have somewhat small
dimensions (width = 0.2 and height = 0.3), which
corresponds with the typical visible footprint of
underground gaps and pipelines in GPR scans.
The off-diagonal scatter plots indicate the interactions
between every pair of features. Particularly, there is a
small positive relationship between width and height,
indicating that bigger elements usually scale in
proportion in both dimensions. Further underlining a
consistency in object positioning and size of the

Fi-Confidence Cur

e

sample, the distributions of x and y relative to width
and height indicate a dense clustering around the
mid-values. Effective training and anchor box
optimization in the YOLOv8 detection process depend
on a well-structured and homogeneous annotation
pattern, which the correlogram frequently validates.

3.3 F1-Confidence Curve

The F1-Confidence Curve indicates [20] the
relationship between the confidence scores for the
model and related F1 scores. Plot indicates that at a
confidence level of 0.373 the F1 score peaks at 0.96.
This indicates that the model impacts an ideal balance
between recall and accuracy at this level of accuracy.
Beyond this threshold, the F1 score decreases,
indicating that increasing confidence causes a
disproportionate reduction in recall compared to
enhancements in precision. When both false positives
and false negatives must be reduced, this curve is very
beneficial in determining the ideal operating point for
the model.
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Figure 5. F1-Confidence Curve

3.4 Precision-Confidence Curve
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The Precision-trust Curve demonstrates how
precision varies with confidence. As confidence
increases, the graph shows that precision steadily
grows stronger till it impacts an elevation of 1.00 ata
threshold of 0.635. It demonstrates that as the model
gains more sure of its predictions, it becomes more

Precsion-Confidence Curve
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accurate, although this could occur at the expense of
recollection. The curve helps you choose a confidence
level that assures high accuracy, which is particularly
crucial in situations where false impacts cost lots of
revenue.
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Figure 6. Precision-Confidence Curve

3.5 Precision-Recall Curve

during multiple confidence levels, the Precision-
Recall (PR) Curve provides an overview of the trade-
off between precision and recall [21]. With a mean
average precision (mAP) of 0.990 at an IoU threshold
of 0.5, the shown curve shows almost perfect
performance, indicating the model maintains great

Precision-Recall Curve

accuracy even as recall approaches its maximum. This
high mAP value indicates that the model differentiates
true positives from false detections instead
remarkable all through a wide range of thresholds.
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Figure 7. Precision-Recall (PR) Curve

3.6 Recall-Confidence Curve
The recall-confidence curve generates attention to
variations in recall according to confidence levels.

Recall starts at a maximum value of 1.00 and steadily
decreases as the confidence threshold rises; it
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eventually reaches this maximum at a confidence
value of 0.000, as the graph shows. This demonstrates
that, at low thresholds, the model detects almost all
pertinent events; at higher thresholds, fewer

Recall Confidence Curve
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detections result and hence less recall. When recall is
a top concern, as in safety-critical applications where
missing a true positive can be quite awful, this curve
is particularly significant.

Hyperbola
e ol classes 100 at 0000

0.0 02 0¢ 06
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Figure 8. Recall-Confidence Curve

4. Discussion

The algorithm's training and validation performance
was recorded throughout 50 epochs, with vital
metrics and loss functions illustrated in the training
curves. The evaluation of the model's training stability
and learning behavior was conducted using the
following metrics: bounding box regression loss
(box_loss), classification loss (cls_loss), distribution
focal loss (dfl_loss), precision, recall, mean Average
Precision at an loU threshold of 0.5 (mAP50), and
mean Average Precision across IoU thresholds
ranging from 05 to 095 (mAP50-95).
The validation loss curves reflected the training
trends, with all loss functions continuously reducing,
although with slight fluctuations. These minor
variations will occur due to the inherent complexity of
unstructured validation data; nevertheless, the
overall consistency indicates that overfitting didn't
occur, and generalization performance was
maintained.

The model showed an important improvement in
precision and recall all through the initial epochs,
stabilizing toward the conclusion of training.
Precision exceeded 0.9, and recall neared 0.95,
demonstrating the model's robust capacity to
accurately detect true positives and minimize false
negatives. The mAP50 evaluate continuously

During the training process, all three loss
components—box_loss, cls_loss, and dfl_loss—
exhibited a steady decrease, signifying effective
learning and convergence of the model. The
classification loss markedly diminished from roughly
2.5 to about 1.0, indicating increased class separation
over time. The distribution focal loss, which improves
bounding box prediction accuracy, decreased from
approximately 1.65 to almost 1.4, thereby
strengthening the model's localization ability.

improved, approaching values close to 0.95, while the
more stringent mAP50-95 raised from 0.3 to
approximately 0.6 by the end of training. The upward
trend in both mAP metrics suggests that the model is
becoming more effective at accurately detecting
objects across various IoU thresholds.

These results collectively demonstrate the model's
remarkable learning abilities, characterized by high
precision and recall, minimal training and validation
losses, and impressive mean Average Precision
scores. This reinforces the model's potential
effectiveness in  practical item  detection
environments, particularly for tasks related to the
Hyperbola class.
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Figure 9. Training and Validation Performance Analysis

4.1 Confusion Matrix Analysis

The classification model's performance was evaluated
utilising both the raw and adjusted confusion
matrices [22]. The confusion matrix consists of two
categories: Hyperbola and backdrop. The raw
confusion matrix indicates that the model accurately
recognized 307 occurrences of the Hyperbola class
(True Positives) but classified incorrectly 2 instances
of Hyperbola as background (False Negatives). The
model inaccurately identified 57 background cases as
Hyperbola (False Positives) and didn't correctly
identify any background instances (True Negatives =
0).

The normalized confusion matrix clarified the model's
prediction tendencies by showing the ratio of
properly and improperly categorized samples in
relation to the actual class totals. In the Hyperbola
class, 99% of the samples were accurately classified,
while 1% were inaccurately classified. In contrast, all

background samples were inaccurately categorized as
Hyperbola, demonstrating a total failure to identify
the background class.
The current study reveals a significant bias of the
model towards the Hyperbola class. Although the
model achieving a remarkable recall of 0.994 in
identifying Hyperbola instances, its precision is
comparatively diminished at 0.843, attributing to a
significant occurrence of false positives. Thus, the F1
score for the Hyperbola class is 0.912, indicating an
acceptable balancing between precision and recall.
Nevertheless, the model exhibits inadequate
performance in identifying the background class,
indicating a necessity to correct the class imbalance or
boost model discrimination to improve overall
efficacy.

Figure 10. Confusion Matrix
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Figure 11. Confusion Matrix Normalized

5. Conclusion

The study built and assessed a deep learning-based
object detection model for the efficient hyperbolic
feature identification in radar image. With
continuously dropping loss functions and substantial
generalization across unseen data, a thorough
analysis of training and validation curves indicated
the persistent convergence of the model. High values
in precision (about 0.9), recall (around 0.95), and
mean Average Precision (mAP50 = 0.95, mAP50-95 =
0.6) so support the model's robustness and accuracy
in hyperbola detection. Confirming the accuracy of the
model, the confusion matrix study showed a high true
positive rate and a minimum of incorrect
classifications. The results show generally that the
suggested model not only reaches high detection
accuracy but also preserves a strong balance between
precision and recall, thus appropriate for real-world
geophysical or wunderground anomaly detection
applications. Future research might look into the
integration of more varied datasets and real-time
implementation to thus improve the scalability and
applicability of the system.
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