
Priya B Shinde    

American Journal of Psychiatric ehabilitation         Expert Opinion Article   

 

Doi: 10.69980/ajpr.v28i5.821 1548-7776 Vol. 28 No. 2 (2025) March 1887/13 
 

Automatic Recognition of Underground Pipelines using Ground 
Penetrating Radar Images 
 
Priya B Shinde *1 , Aziz Binnaser 2 , Gaju S. Chavan3  , Shital N. Katkade4  
 
1 Dr. Babasaehb Ambedkar Marathwada University Chh. Sambhajinagar, Departmnet of Computer Science & IT, 
India,  piyushinde978@gmail.com 
2 Dr. Babasaehb Ambedkar Marathwada University Chh. Sambhajinagar, Sir Sayyed College of Science, India,  
azizbinnaser@gmail.com 
3 Dr. Babasaehb Ambedkar Marathwada University Chh. Sambhajinagar, Departmnet of Computer Science & IT, 
India,  gajuchavan1111@gmail.com 
4 Dr. Babasaehb Ambedkar Marathwada University Chh. Sambhajinagar, Departmnet of Computer Science & IT, 
India,  shitalkatkade25@gmail.com 
 
Abstract 
The detection of underground locations and hidden pipelines is essential in subsurface engineering, utility 
mapping, and geophysical exploration. Conventional techniques dependent on manual analysis of Ground 
Penetrating Radar (GPR) data are labor-intensive and susceptible to human error. The current study introduces an 
automated methodology applying the YOLOv8 deep learning model for real-time item detection in GPR photos. A 
highly selected and annotated dataset obtained from the Roboflow Universe platform, comprising 1,474 GPR 
images annotated with bounding boxes for underground gaps and pipelines, was utilized for model training and 
assessment. The dataset included various subsurface circumstances, such as differences in soil type, moisture 
content, and buried depth, which enhanced the model's generality. Preprocessing involved image standardization 
and augmentation methods, including flipping, rotation, and brightness modifications to enhance adaptability. The 
trained model exhibited outstanding accuracy, attaining a precision of 0.90, a recall of 0.95, and a mean Average 
Precision (mAP50) of almost 0.95. The results show the efficacy of the YOLOv8 model in precisely detecting 
subsurface anomalies, presenting significant opportunities for enhancing the efficiency and reliability of GPR data 
analysis. This study focuses on the efficacy of open-source datasets and effective object detection algorithms in 
automating necessary tasks in underground infrastructure assessment. 
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1. Introduction  
The identification and comprehension of 
underground structures like voids, cavities, and pipes 
is very important for geotechnical engineering, urban 
planning, disaster management, and for maintaining 
infrastructure in good condition. Since metropolitan 
areas develop rapidly and underground utilities 
become increasingly complicated, the requirement 
for exact, quick and easy and non-invasive detection 
methods has never been greater. Ground Penetrating 
Radar (GPR) is one of the most used geophysical 
technology because it can take high-resolution 
pictures of the ground without destroying it. GPR 
sends high-frequency electromagnetic pulses into the 
ground and data the signals which bounce back from 
buried objects or changes in material attributes [1]. 
Analysts then consequently these reflections into 
radar grams, which they use to figure out what is 
underground. 
Although it operates, manually evaluating GPR data 
can be difficult easy to supply many of causes. 
Applying radar reflections effectively is additionally 
difficult work and takes a lot of time, but it also 
demands a lot of knowledge in the field, especially 

when the signals are noisy, low-contrast, or 
undefined. It becomes even more effectively to 
understand because the soil's composition, moisture 
content, and depth of items can all change. These 
problems make it hard for GPR to be used in real time 
and on an extensive scale in infrastructure projects 
[2]. 
The application of artificial intelligence (AI), 
especially deep learning-based computer vision 
algorithms, has developed into a groundbreaking way 
of analyzing GPR data in sequence to find solutions 
within these problems [3]. Deep learning models have 
been shown to be quite effective at learning complex 
patterns and implementing what's they've learned to 
other datasets. Object detection is an essential part of 
computer vision which allows machines 
automatically identify and locate particular objects in 
an image. Which makes it perfect to identify 
subsurface anomalies. 
The YOLO (You Only Look Once) series has grown into 
the standard for real-time detection because of its 
unification architecture and fast inference speed. 
YOLOv8, the most recent version, has a number of 
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important improvements over earlier versions. These 
are some of the new features: a decoupled detection 
head for better classification and localization, an 
upgraded CSPDarknet-based backbone, improved 
spatial pyramid pooling for multi-scale feature 
aggregation, and an optimized anchor-free 
architecture. These new features make it easier for 
YOLOv8 to find small, irregular, and overlapping 
objects with better accuracy, which is very useful in 
the noisy and complicated world of GPR illustrations 
[4]. 
The present research applies YOLOv8 to 
automatically find underground locations and 
pipelines in GPR illustrations. The primary objective 
is to create a strong detection model trained on 
properly labeled radargrams so that the difficult and 
error-prone task of manual interpretation can be 
done automatically [5]. 
Key components of this research include: 
 Pre-processing of GPR images to reduce noise 
and improve feature visibility. 
 Annotation and augmentation of a GPR dataset 
containing diverse underground structures across 
varying conditions. 
 Model training and fine-tuning using YOLOv8, 
with optimization of hyper parameters for GPR-
specific characteristics. 
 Evaluation of model performance using 
standard metrics such as Precision, Recall, F1-score, 
Intersection over Union (IoU), and mean Average 
Precision (mAP). 
 Comparative analysis with alternative object 
detection models (e.g., YOLOv5, SSD, Faster R-CNN) to 
establish the efficacy of YOLOv8. 
The objective of this research is to develop a real-time, 
scalable, and accurate detection system that enhances 
operational efficiency and decision-making in 
subsurface exploration through the use of deep 
learning to analyze GPR data. The outcome may 
impact the way underground utilities and anomalies 
are represented and observed that could be an 
important tool in managing smart city infrastructure, 
archeological analysis, and citizen security [6]. 
 
2. Literature Review 
The utilization of Ground Penetrating Radar (GPR) in 
underground exploration has improved considerably 
in recent decades. Ground Penetrating Radar (GPR), a 
non-invasive and high-resolution geophysical 
method, has been widely used for detecting 
underground utilities, archeological features, voids, 
and anomalies across various soil conditions. The 
interpretation of GPR illustrations is a complex and 
specialized work, frequently constrained by noise, 
signal attenuation, and operator variability. This 
difficulty has resulted in an increasing quantity of 
research dedicated to the automation of GPR data 

interpretation through sophisticated signal 
processing and machine learning techniques. 
 
2.1 Traditional Approaches to GPR Data 
Interpretation 
Earlier methodologies for GPR data interpretation 
mainly depended on signal processing and pattern 
recognition techniques. Time-frequency analysis 
techniques such as Short-Time Fourier Transform 
(STFT), Wavelet Transform, and Hilbert-Huang 
Transform (HHT) have been used to enhance feature 
extraction from noisy radar data. These methods, 
while successful in controlled environments, 
encountered difficulties in generalisation across 
different circumstances due to substantial variation in 
subsurface compositions and reflection patterns [7].  
Furthermore, traditional machine learning methods, 
including Support Vector Machines (SVM), K-Nearest 
Neighbors (KNN), and Random Forests, were used for 
the classification of GPR signatures. C. Zhang et al. 
(2000) illustrated the utilization of neural networks 
for the detection of hidden objects in radar data. 
Although these methods demonstrated promise, they 
frequently necessitated manually constructed 
features and substantial preprocessing, hence 
constraining their scalability and robustness in 
practical applications. 
 
2.2 Emergence of Deep Learning in GPR 
Applications 
The emergence of deep learning has brought about a 
notable transformation in the analysis of GPR data. 
Convolutional Neural Networks (CNNs) have shown 
remarkable effectiveness in extracting hierarchical 
features from images. Investigations conducted by 
Zhang et al. (2018) and Ma et al. (2020) utilized CNNs 
for classifying GPR B-scans, resulting in impressive 
accuracy in identifying underground pipes and voids. 
The models minimized the need for manual feature 
engineering and demonstrated improve 
generalization across various soil types and object 
depths [8].  
However, initial approaches applying CNNs mainly 
concentrated on classification tasks and had been 
deficient in accurately localizing objects within 
radargrams. This limitation caused an exploration of 
object detection frameworks that are capable of 
simultaneously classifying and localizing 
underground features. 
 
2.3 Object Detection Techniques in GPR 
Object detection models, including Faster R-CNN, SSD 
(Single Shot MultiBox Detector), and YOLO (You Only 
Look Once), have been used in different areas such as 
medical imaging, autonomous driving, and remote 
sensing. Their application to GPR is comparatively 
younger yet increasing fast. 
Faster R-CNN was among the initial frameworks 
investigated for GPR-based object detection. Although 
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it provided high precision, its two-stage construction 
rendered it computationally prohibitive for real-time 
applications.  
• YOLOv3 and YOLOv5 have demonstrated effective 
performance in detecting underground utilities 
within radargrams. Their single-shot architecture 
facilitates rapid inference, an essential element in 
field applications. Wang et al. (2021) employed 
YOLOv5 to accurately locate underground pipes, 
illustrating that deep object detectors surpass 
conventional approaches in both precision and 
efficiency [9]. 
 
2.4 Advancements with YOLOv8 
YOLOv8, the most recent iteration in the YOLO series, 
features multiple architectural improvements such as 
a decoupled head, anchor-free detection, and a more 
efficient backbone (C2f + CSP Dark net). These 
enhancements facilitate superior recognition of small 
and overlapping objects, commonly found in GPR 
data, where targets frequently manifest as hyperbolic 
reflections amid clutter [10].  
Currently, research explicitly utilizing YOLOv8 for 
GPR images is rare, emphasizing a gap that this work 
intends to fill. Benchmark results from other domains, 
such as COCO and Pascal VOC, indicate that YOLOv8 
surpasses previous models in mean Average Precision 
(mAP) and inference time, positioning it as a 
promising opposition for subsurface feature 
recognition [11].  
Although previous research has demonstrated the 
promise of deep learning for GPR interpretation, some 
problems persist:  
• Limited access to annotated GPR datasets for the 
development of robust models. • Variable 
performance under diverse soil and environmental 
conditions.  
• Lack of research particularly addressing YOLOv8-
based detection for GPR.  
This study attempts to address these limitations by 
creating and assessing a YOLOv8-based object 
detection model specifically designed for identifying 
underground holes and pipes in GPR images. It further 
enhances the increasing database of knowledge at the 
convergence of deep learning and geophysical 
imaging. 
 
3. Method 
3.1Database  
We used the Roboflow Universe dataset to train and 
test the YOLOv8 model for automatically finding 
subterranean holes and pipelines in Ground 
Penetrating Radar (GPR) images. Roboflow Universe 
is a popular platform that gives users access to a wide 
range of annotated datasets that are useful for 

different applications in computer vision [12].  
The selected gathering includes radar images with 
bounding boxes that show underground voids and 
pipelines in different environmental and subsurface 
conditions, such as variances in soil type, moisture 
level, and depth of its burial. This variety makes the 
model better at applying to a wider number of real-
world GPR situations. 
 
Key characteristics of the dataset include: 
 Number of Images: 1,474 GPR images. 
 Annotations: Each image contains labeled 
bounding boxes for identifying underground voids 
and pipelines. 
 Image Format and Resolution: All images were 
standardized to a resolution of 640×640 pixels, 
conforming to YOLOv8’s input requirements. 
 Data Augmentation Techniques: To improve 
model robustness and mitigate overfitting, several 
augmentation techniques were applied, including 
horizontal and vertical flipping, rotation, and 
brightness adjustments. 
Using the Roboflow Universe dataset gave us access to 
a carefully sourced and varied collection of high-
quality GPR images, which were very helpful in 
creating a strong and accurate detection model. This 
foundation is very important for the development of 
automated and real-time subsurface exploration 
techniques. 
     
3.2 Preprocessing 
A systematic dataset of Ground Penetrating Radar 
(GPR) images has been put together such that YOLOv8 
could automatically find underground voids and pipes 
[13]. The dataset has images labeled from multiple 
batches, such train_batch0.jpg, train_batch1.jpg, and 
so on, up to train_batch5162.jpg shown in figure 1 (a), 
(b) (c). The images show various conditions below the 
surface. We used the YOLO format to label each image, 
which means that each object (void or pipeline) has a 
bounding box and a class label which passes with it. 
We examined each annotation by the same time to 
make sure that they were correct and consistent. The 
dataset was put up in the way that YOLOv8 needs it, 
with different categories for training and validation 
images and labels [14]. It generated a configuration 
file called data.yaml that set up the structure of the 
dataset, such as the number of classes and their 
names. This preparation made it possible to train the 
YOLOv8 object detection model quickly and 
accurately, which made it possible to find 
underground things in GPR images in real time. 
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(a) 

 

 
                              (b) 

 
 

 
         (c) 

                           
Figure 1.  (a) Train_Batch0, (b) Train_Batch1 & (c) Train_Batch5162 
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Normally indicating the presence of underground 
abnormalities including pipelines or voids, the 
provided figures show the performance of the 
YOLOv8 model in detecting hyperbolic signatures 
within Ground Penetrating Radar (GPR) B-scan 
images [15]. Figures 2 (a), (b), and (c) of the training 
batches show a range of hyperbolic reflections 
manually annotated that include various depths, 
amplitudes, and noise from surrounding conditions. 
Figure 2 (a) and (b), on the additional present, show 
the inference outputs of the model, consequently 
emphasizing its capacity to identify hyperbolas across 
several GPR environment with various levels of 
confidence. These detections are tagged with 
probability ratings (e.g., Hyperbola 0.7), consequently 

reflected the accuracy of the model in exactly spotting 
the hyperbolic pattern [16]. Figure 2 (d) through (f) 
also opposed projected bounding boxes on the 
validation set against ground truth annotations. 
The consistency and accuracy of the model in applying 
to unknown data are shown by the visual alignment of 
expected boxes with the real labels. The excellent 
contrast of discovered hyperbolas against noisy 
backgrounds confirms even more the durability of the 
model under demanding real-world subsurface 
imaging settings  [17]. These results verify the ability 
of YOLOv8 for real-time, automated hyperbola 
detection in GPR applications aimed at subsurface 
feature analysis and underground utility mapping.  
    

 

 
(a) 

 

 
(b) 
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(f) 

 
Figure 2. (a), (b) & (c) Range of Hyperbolic Reflections & Detecting Hyperbolic Signatures, (d to f) Projected 

Bounding Boxes on the Validation Set 
 

The spatial and dimensional features of the annotated 
objects in the Ground Penetrating Radar (GPR) 
dataset are revealed by the visual study of label 
distribution as showed in the image below. Indicating 
a single object class Hyperbola with over 1,000 
annotations, the top-left histogram indicates the total 
amount of labeled instances. demonstrating a 
significant amount of annotations around the central 
portion of the image, the top-right plot overlays all 
bounding boxes on a normalized image plane, which 
indicates that subsurface features typically exist at the 
central region in the dataset [18]. Further verifying to 
the central bias of target features in GPR scans, the 
bottom-left scatter plot indicates the distribution of 

the x and y center coordinates of the bounding boxes, 
which are basically overflowing around the center (x 
= 0.5, y ≈ 0.5). Most boxes have moderate dimensions, 
frequently arranged within a width range of 0.1–0.3 
and height range of 0.2–0.4, hence the bottom-right 
plot indicates the distribution of bounding box width 
and height. During training, constant scaling helps 
model stability. These label distribution patterns 
implemented together in order verify the consistency 
of the dataset and provide the required information 
for best anchor box settings and model performance 
efficiency improvements. 
 

 

 
Figure 3. Labels 
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Figure 4. Labels Correlogram 

 
For the annotation of subsurface features in the 
Ground Penetrating Radar (GPR) dataset, the 
correlogram visualization provides a complete 
statistical summary of the distribution and 
relationships among the normalized bounding box 
attributes x, y, width, and height. With a large 
concentration around the center of the image plane (x 
= 0.5, y ≈ 0.5), the diagonal histograms indicate that 
the x and y center coordinates are normally 
distributed, therefore indicating a spatial bias in 
which most features are centrally located [19]. The 
width and height distributions are right-skewed; 
most bounding boxes have somewhat small 
dimensions (width = 0.2 and height ≈ 0.3), which 
corresponds with the typical visible footprint of 
underground gaps and pipelines in GPR scans.  
The off-diagonal scatter plots indicate the interactions 
between every pair of features. Particularly, there is a 
small positive relationship between width and height, 
indicating that bigger elements usually scale in 
proportion in both dimensions. Further underlining a 
consistency in object positioning and size of the 

sample, the distributions of x and y relative to width 
and height indicate a dense clustering around the 
mid-values. Effective training and anchor box 
optimization in the YOLOv8 detection process depend 
on a well-structured and homogeneous annotation 
pattern, which the correlogram frequently validates. 
 
3.3 F1-Confidence Curve 
The F1-Confidence Curve indicates [20] the 
relationship between the confidence scores for the 
model and related F1 scores. Plot indicates that at a 
confidence level of 0.373 the F1 score peaks at 0.96. 
This indicates that the model impacts an ideal balance 
between recall and accuracy at this level of accuracy. 
Beyond this threshold, the F1 score decreases, 
indicating that increasing confidence causes a 
disproportionate reduction in recall compared to 
enhancements in precision. When both false positives 
and false negatives must be reduced, this curve is very 
beneficial in determining the ideal operating point for 
the model. 
 

 

 
Figure 5. F1-Confidence Curve 

 
3.4 Precision-Confidence Curve 
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The Precision-trust Curve demonstrates how 
precision varies with confidence. As confidence 
increases, the graph shows that precision steadily 
grows stronger till it impacts an elevation of 1.00 at a 
threshold of 0.635. It demonstrates that as the model 
gains more sure of its predictions, it becomes more 

accurate, although this could occur at the expense of 
recollection. The curve helps you choose a confidence 
level that assures high accuracy, which is particularly 
crucial in situations where false impacts cost lots of 
revenue. 

 

 
Figure 6. Precision-Confidence Curve 

 
 
 
3.5 Precision-Recall Curve 
during multiple confidence levels, the Precision-
Recall (PR) Curve provides an overview of the trade-
off between precision and recall [21]. With a mean 
average precision (mAP) of 0.990 at an IoU threshold 
of 0.5, the shown curve shows almost perfect 
performance, indicating the model maintains great 

accuracy even as recall approaches its maximum. This 
high mAP value indicates that the model differentiates 
true positives from false detections instead 
remarkable all through a wide range of thresholds. 
 

 

 
Figure 7. Precision-Recall (PR) Curve 

 

 
3.6 Recall-Confidence Curve 
The recall-confidence curve generates attention to 
variations in recall according to confidence levels. 

Recall starts at a maximum value of 1.00 and steadily 
decreases as the confidence threshold rises; it 
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eventually reaches this maximum at a confidence 
value of 0.000, as the graph shows. This demonstrates 
that, at low thresholds, the model detects almost all 
pertinent events; at higher thresholds, fewer 

detections result and hence less recall. When recall is 
a top concern, as in safety-critical applications where 
missing a true positive can be quite awful, this curve 
is particularly significant. 

 

 
Figure 8.  Recall-Confidence Curve 

 
 
4. Discussion 
The algorithm's training and validation performance 
was recorded throughout 50 epochs, with vital 
metrics and loss functions illustrated in the training 
curves. The evaluation of the model's training stability 
and learning behavior was conducted using the 
following metrics: bounding box regression loss 
(box_loss), classification loss (cls_loss), distribution 
focal loss (dfl_loss), precision, recall, mean Average 
Precision at an IoU threshold of 0.5 (mAP50), and 
mean Average Precision across IoU thresholds 
ranging from 0.5 to 0.95 (mAP50-95).  

During the training process, all three loss 
components—box_loss, cls_loss, and dfl_loss—
exhibited a steady decrease, signifying effective 
learning and convergence of the model. The 
classification loss markedly diminished from roughly 
2.5 to about 1.0, indicating increased class separation 
over time. The distribution focal loss, which improves 
bounding box prediction accuracy, decreased from 
approximately 1.65 to almost 1.4, thereby 
strengthening the model's localization ability. 

The validation loss curves reflected the training 
trends, with all loss functions continuously reducing, 
although with slight fluctuations. These minor 
variations will occur due to the inherent complexity of 
unstructured validation data; nevertheless, the 
overall consistency indicates that overfitting didn't 
occur, and generalization performance was 
maintained. 
The model showed an important improvement in 
precision and recall all through the initial epochs, 
stabilizing toward the conclusion of training. 
Precision exceeded 0.9, and recall neared 0.95, 
demonstrating the model's robust capacity to 
accurately detect true positives and minimize false 
negatives. The mAP50 evaluate continuously 

improved, approaching values close to 0.95, while the 
more stringent mAP50-95 raised from 0.3 to 
approximately 0.6 by the end of training. The upward 
trend in both mAP metrics suggests that the model is 
becoming more effective at accurately detecting 
objects across various IoU thresholds.  
These results collectively demonstrate the model's 
remarkable learning abilities, characterized by high 
precision and recall, minimal training and validation 
losses, and impressive mean Average Precision 
scores. This reinforces the model's potential 
effectiveness in practical item detection 
environments, particularly for tasks related to the 
Hyperbola class. 
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Figure 9. Training and Validation Performance Analysis 

 
4.1 Confusion Matrix Analysis 
The classification model's performance was evaluated 
utilising both the raw and adjusted confusion 
matrices [22]. The confusion matrix consists of two 
categories: Hyperbola and backdrop. The raw 
confusion matrix indicates that the model accurately 
recognized 307 occurrences of the Hyperbola class 
(True Positives) but classified incorrectly 2 instances 
of Hyperbola as background (False Negatives). The 
model inaccurately identified 57 background cases as 
Hyperbola (False Positives) and didn't correctly 
identify any background instances (True Negatives = 
0).  
The normalized confusion matrix clarified the model's 
prediction tendencies by showing the ratio of 
properly and improperly categorized samples in 
relation to the actual class totals. In the Hyperbola 
class, 99% of the samples were accurately classified, 
while 1% were inaccurately classified. In contrast, all 

background samples were inaccurately categorized as 
Hyperbola, demonstrating a total failure to identify 
the background class.  
The current study reveals a significant bias of the 
model towards the Hyperbola class. Although the 
model achieving a remarkable recall of 0.994 in 
identifying Hyperbola instances, its precision is 
comparatively diminished at 0.843, attributing to a 
significant occurrence of false positives. Thus, the F1 
score for the Hyperbola class is 0.912, indicating an 
acceptable balancing between precision and recall. 
Nevertheless, the model exhibits inadequate 
performance in identifying the background class, 
indicating a necessity to correct the class imbalance or 
boost model discrimination to improve overall 
efficacy. 
 

 

 
Figure 10.  Confusion Matrix 
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Figure 11.  Confusion Matrix Normalized 

 
5. Conclusion  
The study built and assessed a deep learning-based 
object detection model for the efficient hyperbolic 
feature identification in radar image. With 
continuously dropping loss functions and substantial 
generalization across unseen data, a thorough 
analysis of training and validation curves indicated 
the persistent convergence of the model. High values 
in precision (about 0.9), recall (around 0.95), and 
mean Average Precision (mAP50 ≈ 0.95, mAP50-95 = 
0.6) so support the model's robustness and accuracy 
in hyperbola detection. Confirming the accuracy of the 
model, the confusion matrix study showed a high true 
positive rate and a minimum of incorrect 
classifications. The results show generally that the 
suggested model not only reaches high detection 
accuracy but also preserves a strong balance between 
precision and recall, thus appropriate for real-world 
geophysical or underground anomaly detection 
applications. Future research might look into the 
integration of more varied datasets and real-time 
implementation to thus improve the scalability and 
applicability of the system. 
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