Artificial Intelligence for Remote Monitoring and Management of Chronic Rheumatological Diseases: A Case Study of Osteoarthritis and Rheumatoid Arthritis
DOI:
https://doi.org/10.69980/ajpr.v27i2.414Keywords:
Quantitative Study, Digital Health Tools, Statistical Analysis, Tool Effectiveness, Patient OutcomesAbstract
Background: Healthcare has been transformed by Artificial Intelligence (AI) which demonstrates remote monitoring capability for assessing and treating patients with chronic rheumatological diseases including osteoarthritis (OA) and rheumatoid arthritis (RA). Fortunately, AI has shown much promise yet its real-world performance along with user outcomes remain poorly documented.
Objective: This research evaluates the capabilities of artificial intelligence in treating osteoarthritis and rheumatoid arthritis by examining user evaluations of program performance and determining elements affecting satisfaction with AI systems.
Methods: The quantitative study utilized structured surveys with three distinct target groups - patients and healthcare providers alongside researchers. The survey monitored participant demographics alongside survey data regarding disease profiles together with digital tool behaviors and evaluations of Artificial Intelligence beneficial attributes and system happiness. Statistical analysis consisted of descriptive along with inferential measures plus Shapiro-Wilk tests for normality verification together with Cronbach's Alpha calculations for reliability checks followed by linear regression to evaluate the relationship between tool efficiency and satisfaction.
Results: The study included 250 respondents. Using the chi-square test, it was established that the normality tests that were employed to check the normal distribution of “Tool Effectiveness” and “Satisfaction” scores were both rejected at 0.05 significant levels. The internal consistency of the reliabilities was low (Cronbach’s Alpha = 0.178). Further, regression analysis displayed a poor negative correlation where tool effectiveness could explain only 1% of satisfaction with a value of p > 0.05. The graphics used showed a variation in responses and recommended a broad-based approach to the assessment.
Conclusion: Currently, overall OA and RA management with AI-based tools can be perceived as promising; however, the current level of user satisfaction and perceived effectiveness in designing and implementing those tools seems to be questionable. Thus, the subsequent promotion experiences should focus on aspects such as comprehensibility, credibility, and infrastructure within medical organizations. Future studies are required to better optimize AI interventions and understand AI’s overall effect on the control and management of the studied diseases.
References
1. Akinnuwesi, B. A., Adegbite, B. A., Adelowo, F., Ima-Edomwonyi, U., Fashoto, G., & Amumeji, O. T. (2020). Decision support system for diagnosing rheumatic-musculoskeletal disease using fuzzy cognitive map technique. Informatics in Medicine Unlocked, 18, 100279.
2. Bergier, H., Duron, L., Sordet, C., Kawka, L., Schlencker, A., Chasset, F., & Arnaud, L. (2021). Digital health, big data and smart technologies for the care of patients with systemic autoimmune diseases: where do we stand? Autoimmunity reviews, 20(8), 102864.
3. Bernard, L., Valsecchi, V., Mura, T., Aouinti, S., Padern, G., Ferreira, R., Pastor, J., Jorgensen, C., Mercier, G., & Pers, Y.-M. (2022). Management of patients with rheumatoid arthritis by telemedicine: connected monitoring. A randomized controlled trial. Joint Bone Spine, 89(5), 105368.
4. Bird, A., Oakden-Rayner, L., McMaster, C., Smith, L. A., Zeng, M., Wechalekar, M. D., Ray, S., Proudman, S., & Palmer, L. J. (2022). Artificial intelligence and the future of radiographic scoring in rheumatoid arthritis: a viewpoint. Arthritis Research & Therapy, 24(1), 268.
5. Bragazzi, N. L., Bridgewood, C., Watad, A., Damiani, G., Kong, J. D., & McGonagle, D. (2022). Harnessing big data, smart and digital technologies and artificial intelligence for preventing, early intercepting, managing, and treating psoriatic arthritis: insights from a systematic review of the literature. Frontiers in Immunology, 13, 847312.
6. Chinnadurai, S., Mahadevan, S., Navaneethakrishnan, B., & Mamadapur, M. (2023). Decoding applications of artificial intelligence in rheumatology. Cureus, 15(9).
7. Christensen, A. B. H., Just, S. A., Andersen, J. K. H., & Savarimuthu, T. R. (2020). Applying cascaded convolutional neural network design further enhances the automatic scoring of arthritis disease activity on ultrasound images from rheumatoid arthritis patients. Annals of the rheumatic diseases, 79(9), 1189-1193.
8. Davergne, T., Kedra, J., & Gossec, L. (2021). Wearable activity trackers and artificial intelligence in the management of rheumatic diseases: where are we in 2021? Zeitschrift fur Rheumatologie, 80(10), 928.
9. Davergne, T., Rakotozafiarison, A., Servy, H., & Gossec, L. (2020). Wearable activity trackers in the management of rheumatic diseases: where are we in 2020? Sensors, 20(17), 4797.
10. De Cock, D., Myasoedova, E., Aletaha, D., & Studenic, P. (2022). Big data analyses and individual health profiling in the arena of rheumatic and musculoskeletal diseases (RMDs). Therapeutic Advances in Musculoskeletal Disease, 14, 1759720X221105978.
11. De Thurah, A., Bosch, P., Marques, A., Meissner, Y., Mukhtyar, C. B., Knitza, J., Najm, A., Østerås, N., Pelle, T., & Knudsen, L. R. (2022). 2022 EULAR points to consider for remote care in rheumatic and musculoskeletal diseases. Annals of the rheumatic diseases, 81(8), 1065-1071.
12. Desilet, L. W., Pedro, S., Katz, P., & Michaud, K. (2023). Urban/rural Patterns of Healthcare Utilization among People with Rheumatoid Arthritis and Osteoarthritis in a large US patient registry. Arthritis care & research.
13. Ezhil Grace, A., & Thandaiah Prabu, R. (2023). Advancing Rheumatoid Arthritis Care: Exploring Technological Breakthroughs and Future Directions. International Conference on Soft Computing: Theories and Applications,
14. Fahmi, A. (2021). Decision-Support for Rheumatoid Arthritis Using Bayesian Networks: Diagnosis, Management, and Personalised Care Doctoral dissertation, Queen Mary University of London].
15. Garner, A. J., Saatchi, R., Ward, O., & Hawley, D. P. (2021). Juvenile idiopathic arthritis: a review of novel diagnostic and monitoring technologies. Healthcare,
16. Giovannini, I., Bosch, P., Dejaco, C., De Marco, G., McGonagle, D., Quartuccio, L., De Vita, S., Errichetti, E., & Zabotti, A. (2021). The digital way to intercept psoriatic arthritis. Frontiers in medicine, 8, 792972.
17. Gwinnutt, J. M., Wieczorek, M., Balanescu, A., Bischoff-Ferrari, H. A., Boonen, A., Cavalli, G., De Souza, S., De Thurah, A., Dorner, T. E., & Moe, R. H. (2023). 2021 EULAR recommendations regarding lifestyle behaviors and work participation to prevent the progression of rheumatic and musculoskeletal diseases. Annals of the rheumatic diseases, 82(1), 48-56.
18. Hasan, F., Mudey, A., & Joshi, A. (2023). Role of Internet of Things (IoT), artificial intelligence and machine learning in musculoskeletal pain: a scoping review. Cureus, 15(4).
19. Imtiaz, M., Shah, S. A. A., & ur Rehman, Z. (2022). A review of arthritis diagnosis techniques in artificial intelligence era: Current trends and research challenges. Neuroscience Informatics, 2(4), 100079.
20. Jiang, M., Li, Y., Jiang, C., Zhao, L., Zhang, X., & Lipsky, P. E. (2021). Machine learning in rheumatic diseases. Clinical Reviews in Allergy & Immunology, 60(1), 96-110.
21. Kedra, J., Davergne, T., Braithwaite, B., Servy, H., & Gossec, L. (2021). Machine learning approaches to improve disease management of patients with rheumatoid arthritis: review and future directions. Expert Review of Clinical Immunology, 17(12), 1311-1321.
22. Knitza, J., Krusche, M., & Sewerin, P. (2023). Digital rheumatology. Digital Medicine, 543-561.
23. Manzano, W., Lenchik, L., Chaudhari, A. S., Yao, L., Gupta, S., & Boutin, R. D. (2022). Sarcopenia in rheumatic disorders: what the radiologist and rheumatologist should know. Skeletal Radiology, 1-12.
24. McMaster, C., Bird, A., Liew, D. F., Buchanan, R. R., Owen, C. E., Chapman, W. W., & Pires, D. E. (2022). Artificial intelligence and deep learning for rheumatologists. Arthritis & Rheumatology, 74(12), 1893-1905.
25. Mehta, B., Goodman, S., DiCarlo, E., Jannat-Khah, D., Gibbons, J. A. B., Otero, M., Donlin, L., Pannellini, T., Robinson, W. H., & Sculco, P. (2023). Machine learning identification of thresholds to discriminate osteoarthritis and rheumatoid arthritis synovial inflammation. Arthritis Research & Therapy, 25(1), 31.
26. Mehta, B., Pedro, S., Ozen, G., Kalil, A., Wolfe, F., Mikuls, T., & Michaud, K. (2019). Serious infection risk in rheumatoid arthritis compared with non-inflammatory rheumatic and musculoskeletal diseases: a US national cohort study. RMD open, 5(1), e000935.
27. Misra, D. P., & Agarwal, V. (2019). Real-world evidence in rheumatic diseases: relevance and lessons learned. Rheumatology International, 39(3), 403-416.
28. Momtazmanesh, S., Nowroozi, A., & Rezaei, N. (2022). Artificial intelligence in rheumatoid arthritis: current status and future perspectives: a state-of-the-art review. Rheumatology and Therapy, 9(5), 1249-1304.
29. Morales-Ivorra, I., Narváez, J., Gómez-Vaquero, C., Moragues, C., Nolla, J. M., Narváez, J. A., & Marín-López, M. A. (2022). Assessment of inflammation in patients with rheumatoid arthritis using thermography and machine learning: a fast and automated technique. RMD open, 8(2), e002458.
30. Naz, M. R., & Sakarkar, G. (2022). Arthritis detection using thermography and artificial intelligence. 2022 10th International Conference on Emerging Trends in Engineering and Technology-Signal and Information Processing (ICETET-SIP-22),
31. Saranya, C., Sabarinath, M., Balakrishnan, N., & Mahabaleshwar, M. (2023). Decoding Applications of Artificial Intelligence in Rheumatology. Cureus, 15(9).
32. Solomon, D. H., & Rudin, R. S. (2020). Digital health technologies: opportunities and challenges in rheumatology. Nature Reviews Rheumatology, 16(9), 525-535.
33. Song, Y., Bernard, L., Jorgensen, C., Dusfour, G., & Pers, Y.-M. (2021). The challenges of telemedicine in rheumatology. Frontiers in medicine, 8, 746219.
34. Stafford, I. S., Kellermann, M., Mossotto, E., Beattie, R. M., MacArthur, B. D., & Ennis, S. (2020). A systematic review of the applications of artificial intelligence and machine learning in autoimmune diseases. NPJ digital medicine, 3(1), 30.
35. Tarakci, F., Ozkan, I. A., Yilmaz, S., & Tezcan, D. (2023). Diagnosing rheumatoid arthritis disease using fuzzy expert system and machine learning techniques. Journal of Intelligent & Fuzzy Systems, 44(4), 5543-5557.
36. Thurah, A. d., Marques, A., Souza, S. d., Crowson, C. S., & Myasoedova, E. (2022). Future challenges in rheumatology–is telemedicine the solution? Therapeutic Advances in Musculoskeletal Disease, 14, 1759720X221081638.
37. Varga, G., Stoicu-Tivadar, L., & Nicola, S. (2022). Serious gaming and artificial intelligence in rehabilitation of rheumatoid arthritis. In Advances in Informatics, Management and Technology in Healthcare (pp. 562-565). IOS Press.
38. Yacoub, A. S., Ammar, H. O., Ibrahim, M., Mansour, S. M., & El Hoffy, N. M. (2022). Artificial intelligence-assisted development of in situ forming nanoparticles for arthritis therapy via intra-articular delivery. Drug Delivery, 29(1), 1423-1436.
39. Zou, S.-R. (2020). Management of Rheumatoid Arthritis.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 American Journal of Psychiatric Rehabilitation

This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License permitting all use, distribution, and reproduction in any medium, provided the work is properly cited.