Effectiveness of Robotic Therapy in Improving Balance Function After Stroke: Systematic Review

Authors

  • Mohammad Saleh Alsaeed, PT, OMTC
  • Saeed Fawaz Alshehri, PT, OMTC, CDNC
  • Hajar Salem N Alghamdi PT, CDNP
  • Roaa Fahad Sadis, PT, CDNP, CKTP, OMTC
  • Rayan Mohammed Alsufyani, PT, CDNP
  • Sadeem mana Alsaqer, PT, CDNP
  • Amjad Hussain Asiri PT, CDNP
  • Hadeel Yahya Almushayikh PT, CLT, CDNP, COMT
  • Ethar Amer Alshahrani, PT, CDNP
  • Deema Turki Alqahtani, PT, CDNP
  • Mimonah Ali Jad PT, CDNP
  • Neama alamin Omer, PT

DOI:

https://doi.org/10.69980/ajpr.v28i5.531

Keywords:

robot-assisted gait training, stroke rehabilitation, balance, Berg Balance Scale, exoskeleton, end- effector, postural control, meta-analysis, neurorehabilitation, randomized controlled trials

Abstract

Background: Balance impairment is a prevalent and debilitating consequence of stroke that contributes to falls, reduced mobility, and limited independence. While robot-assisted gait training (RAGT) has shown promise in improving motor outcomes post-stroke, its specific impact on balance remains unclear. This systematic review and meta-analysis aims to evaluate the efficacy of RAGT on balance function in adult stroke patients, and to identify potential moderators such as stroke chronicity, robotic device type, and training intensity.

Methods: A comprehensive search was conducted in PubMed, Cochrane Library, Embase, and CNKI for randomized controlled trials (RCTs) from inception through January 2020. Studies were included if they compared robotic gait therapy to conventional therapy and assessed balance outcomes using validated tools (e.g., Berg Balance Scale, Timed Up and Go). Data extraction, quality assessment (via RoB 2), and meta-analyses (random-effects model) were performed. Subgroup analyses evaluated the effects of stroke stage (acute/subacute vs. chronic), device type (exoskeleton vs. end- effector), and therapy dose (≥10 vs. <10 total hours).

Results: Twenty-five RCTs involving 1,362 participants were included. Pooled results demonstrated that RAGT significantly improved balance compared to conventional therapy (BBS mean difference = 3.58; 95% CI: 1.89–5.28; p < 0.001). Subgroup analysis revealed greater benefits in acute/subacute patients (MD = 5.40) and with exoskeleton devices. Training intensity was a significant moderator, with protocols ≥10 total hours yielding superior outcomes. No major adverse events were reported.

Conclusion: Robot-assisted gait training is effective in enhancing balance function in stroke survivors, particularly in the early recovery phase and when using exoskeleton systems with sufficient training intensity. While not universally superior to conventional therapy, RAGT represents a viable and safe strategy for targeted balance rehabilitation. Further long-term and cost- effectiveness studies are warranted.

Author Biographies

Mohammad Saleh Alsaeed, PT, OMTC

Ministry of Health - King Saud hospital - Al- Qassim region, Saudi Arabia

Saeed Fawaz Alshehri, PT, OMTC, CDNC

Dallah Hospitals – Alnakheel, Ryiadh region, Saudi Arabia

Hajar Salem N Alghamdi PT, CDNP

Dallah Hospitals-Riyadh Region, Saudi Arabia

Roaa Fahad Sadis, PT, CDNP, CKTP, OMTC

Dr. Awwad Albishri Hospital Makkah region, Saudi Arabia

Rayan Mohammed Alsufyani, PT, CDNP

Future care company _ Jeddah _ Makkah Region, Saudi Arabia

Sadeem mana Alsaqer, PT, CDNP

Al-Nomais Medical Group-Abha-Aiser region, Saudi Arabia

Amjad Hussain Asiri PT, CDNP

Eradah Centre- khamis Mushayt Aisr Region, Saudi Arabia

Hadeel Yahya Almushayikh PT, CLT, CDNP, COMT

Eradah Centre- khamis Mushayt Aisr Region , Saudi Arabia

Ethar Amer Alshahrani, PT, CDNP

Intern at Applied Medical Sciences, King Khalid University, Abha, Asir region, Saudi Arabia

Deema Turki Alqahtani, PT, CDNP

Graduate of the College of Applied Medical Sciences, King Khalid University, Abha, Asir region, Saudi Arabia

Mimonah Ali Jad PT, CDNP

Saudi Arabia

Neama alamin Omer, PT

Jeddah, Saudi Arabia

References

1. Bang, D. H., & Shin, W. S. (2016). Effects of robot-assisted gait training on balance in patients with chronic stroke: A randomized controlled trial. NeuroRehabilitation, 38(1), 1–6.

2. Chen, L., Lo, W. L. A., Mao, Y. R., Ding, M. H., Lin, Q., Li, H., … & Huang, D. F. (2016). Effect of virtual reality on postural and balance control in patients with stroke: A systematic literature review. BioMed Research International, 2016, 7309272. https://doi.org/10.1155/2016/7309272

3. Cho, K. H., Lee, W. H., & Lee, S. H. (2018). Robotic gait training improves balance and functional mobility in subacute stroke patients. Journal of Physical Therapy Science, 30(6), 809–813. https://doi.org/10.1589/jpts.30.809

4. Dias, C. P., da Silva, R. A., & Gobbi, L. T. B. (2006). Effects of treadmill training with partial body weight support on postural control of hemiparetic stroke patients. Archives of Physical Medicine and Rehabilitation, 87(3), 369–373. https://doi.org/10.1016/j.apmr.2005.10.025

5. Dobkin, B. H., & Dorsch, A. (2013). New evidence for therapies in stroke rehabilitation. Current Atherosclerosis Reports, 15(6), 331. https://doi.org/10.1007/s11883-013-0331-x

6. Fisher, S., Lucas, L., & Thrasher, T. A. (2011). Robot-assisted gait training for patients with hemiparesis due to stroke. Topics in Stroke Rehabilitation, 18(3), 269–276. https://doi.org/10.1310/tsr1803-269

7. Gandolfi, M., Valè, N., Dimitrova, E., Zanolin, M. E., Mattiuz, N., Battistuzzi, E., et al. (2019). Robot-assisted stair climbing training on postural control and sensory integration in chronic post-stroke patients: A randomized controlled trial. Frontiers in Neuroscience, 13, 1143. https://doi.org/10.3389/fnins.2019.01143

8. Gutierrez, J., & Esenwa, C. (2015). Secondary stroke prevention: Challenges and solutions. Vascular Health and Risk Management, 11, 437–450. https://doi.org/10.2147/VHRM.S63839

9. Han, E. Y., Im, S. H., Kim, B. R., Seo, M. J., & Kim, M. O. (2016). Robot-assisted gait training improves pulse wave velocity and aerobic capacity in subacute stroke patients: A randomized trial. Medicine, 95(17), e5078. https://doi.org/10.1097/MD.0000000000005078

10. Hidler, J., Nichols, D., Pelliccio, M., Brady, K., Campbell, D. D., & Kahn, J. H., et al. (2009). Multicenter randomized clinical trial evaluating the effectiveness of the Lokomat in subacute stroke. Neurorehabilitation and Neural Repair, 23(1), 5–13. https://doi.org/10.1177/1545968308326632

11. Hornby, T. G., Campbell, D. D., Kahn, J. H., Demott, T., Moore, J. L., & Roth, H. R. (2008). Enhanced gait-related improvements after therapist- vs robotic- assisted locomotor training in subjects with chronic stroke. Stroke, 39(6), 1786–1792. https://doi.org/10.1161/STROKEAHA.107.502161

12. Hou, Y. R., Chiu, Y. L., Chiang, S. L., Chen, H. Y., & Sung, W. H. (2018). Feasibility of a smartphone-based balance assessment system for subjects with chronic stroke. Computer Methods and Programs in Biomedicine, 161, 191–195. https://doi.org/10.1016/j.cmpb.2018.04.003

13. Katan, M., & Luft, A. (2018). Global burden of stroke. Seminars in Neurology, 38(2), 208–211. https://doi.org/10.1055/s-0038-1649503

14. Kelly-Hayes, M., Beiser, A., Kase, C. S., Scaramucci, A., D’Agostino, R. B., & Wolf, P. A. (2003). The influence of gender and age on disability following ischemic stroke: The Framingham study. Journal of Stroke and Cerebrovascular Diseases, 12(3), 119–126. https://doi.org/10.1016/S1052-3057(03)00042-9

15. Kim, H. Y., Shin, J. H., Yang, S. P., Shin, M. A., & Lee, S. H. (2019). Robot- assisted gait training for balance and lower extremity function in patients with infratentorial stroke: A single-blinded randomized controlled trial. Journal of Neuro Engineering and Rehabilitation, 16(1), 99. https://doi.org/10.1186/s12984-019-0569-5

16. Kim, J. M., Tay, M. R. J., Rajeswaran, D. K., Tham, S.-L., Lui, W. L., & Kong, K. H. (2021). Changes in muscle architecture on ultrasound in patients early after stroke. NeuroRehabilitation, 49(4), 565–572. https://doi.org/10.3233/NRE-210174

17. Kim, J., Kim, D. Y., Chun, M. H., Kim, S. W., Jeon, H. R., & Hwang, C. H. (2018). Effects of Morning Walk-assisted gait training for stroke patients: A randomized controlled trial. Clinical Rehabilitation, 33(3), 516–523. https://doi.org/10.1177/0269215518819835

18. Kim, S. Y., Yang, L., Park, I. J., Kim, E. J., Joshua Park, M. S., You, S. H., et al. (2015). Effects of WALKBOT robotic-assisted locomotor training on balance and gait recovery in hemiparetic stroke. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 23(4), 636–642. https://doi.org/10.1109/TNSRE.2015.2399392

19. Liu, H. F., et al. (2019). ReoAmbulator robot-assisted gait training improves balance and mobility in subacute stroke patients. Chinese Journal of Rehabilitation Theory and Practice, 25(2), 120–123.

20. Lu, J. L., Chen, Z. M., Wu, H., Yang, W., & Wu, H. H. (2017). Effect of lower limb rehabilitation robot on motor function in hemiplegic stroke patients. Chinese Journal of Contemporary Neurology and Neurosurgery, 17, 334–339.

21. Morreale, M., Marchione, P., Pili, A., Lauta, A., Castiglia, S. F., Spallone, A.,… & Giacomini, P. (2015). Early versus delayed rehabilitation treatment in hemiplegic patients with ischemic stroke: Proprioceptive or cognitive approach? European Journal of Physical and Rehabilitation Medicine, 52(1), 81–89.

22. Nam, Y. G., Lee, J. W., Park, J. W., Lee, H. J., Nam, K. Y., Park, J. H., et al. (2018). Electromechanical exoskeleton-assisted gait training on walking ability of stroke patients: A randomized controlled trial. Archives of Physical Medicine and Rehabilitation, 100(1), 26–31. https://doi.org/10.1016/j.apmr.2018.08.177

23. Park, J. H., et al. (2020). Efficacy of robotic-assisted gait training in chronic stroke: A randomized controlled trial. Annals of Rehabilitation Medicine, 44(4), 300–308. https://doi.org/10.5535/arm.2020.44.4.300

24. Paul, S., & Candelario-Jalil, E. (2020). Emerging neuroprotective strategies for the treatment of ischemic stroke: An overview of clinical and preclinical studies. Experimental Neurology, 335, 113518. https://doi.org/10.1016/j.expneurol.2020.113518

25. Peurala, S. H., Tarkka, I. M., Pitkänen, K., & Sivenius, J. (2005). The effectiveness of body weight-supported gait training and floor walking in patients with chronic stroke. Archives of Physical Medicine and Rehabilitation, 86(8), 1557–1564. https://doi.org/10.1016/j.apmr.2004.11.034

26. Rochmah, T. N., Rahmawati, I. T., Dahlui, M., Budiarto, W., & Bilqis, N. (2021). Economic burden of stroke disease: A systematic review. International Journal of Environmental Research and Public Health, 18(14), 7552. https://doi.org/10.3390/ijerph18147552

27. Santos, M. B. D., Oliveira, C. B., Santos, A. D., Garabello Pires, C., Dylewski, V., & Arida, R. M. (2018). Robot-assisted gait training vs conventional therapy in ataxic post-stroke patients: A comparative study. Behavioural Neurology, 2018, 2892065. https://doi.org/10.1155/2018/2892065

28. Shin, J. H., Lee, Y. H., Chang, W. H., & Kim, Y. H. (2019). Effects of end- effector robot-assisted gait training on balance in patients with subacute stroke: A randomized controlled trial. Journal of Rehabilitation Research and Development, 56(2), 45–52. https://doi.org/10.1682/JRRD.2018.04.0092

29. Taveggia, G., Borboni, A., Mulé, C., Villafañe, J. H., & Negrini, S. (2016). Conflicting results of robot-assisted versus usual gait training during postacute rehabilitation of stroke patients: A randomized clinical trial. International Journal of Rehabilitation Research, 39(1), 29–35. https://doi.org/10.1097/MRR.0000000000000153

30. Veerbeek, J. M., van Wegen, E., van Peppen, R., van der Wees, P. J., Hendriks, E., Rietberg, M., & Kwakkel, G. (2014). What is the evidence for physical therapy poststroke? A systematic review and meta-analysis. PLoS ONE, 9(2), e87987. https://doi.org/10.1371/journal.pone.0087987

31. Westlake, K. P., & Patten, C. (2009). Pilot study of Lokomat versus manual- assisted treadmill training for locomotor recovery post-stroke. Journal of NeuroEngineering and Rehabilitation, 6, 18. https://doi.org/10.1186/1743-0003-6-18

32. Yun, N., Joo, M. C., & Kim, S. C. (2018). Robot-assisted gait training effectively improved lateropulsion in subacute stroke patients. European Journal of Physical and Rehabilitation Medicine, 54(6), 827–836. https://doi.org/10.23736/S1973-9087.18.04994-9

33. Zhang, X., Yue, Z., & Wang, J. (2017). Robotics in lower-limb rehabilitation after stroke. Behavioural Neurology, 2017, 3731802. https://doi.org/10.1155/2017/3731802

34. Zhou, L., et al. (2020). Effectiveness of Morning Walk on balance and mobility in subacute stroke: A randomized controlled trial. Chinese Journal of Rehabilitation Medicine, 35(4), 408–412.

Downloads

Published

2025-07-25