Evaluation of Components Associated with the Complement Pathway as Potential Biomarkers for Breast Tumors

Authors

  • Jaafar Khalaf Ali
  • Izzat Abdulsatar Al-Rayahi
  • Mohammed Flyyiah Treaf

DOI:

https://doi.org/10.69980/ajpr.v28i5.560

Keywords:

Breast cancer, Complement, C1q, C3, Properdin

Abstract

The study was designed to investigate the variations in complement system components (C1q, Properdin, C3, and C4) expression patterns among breast tumor types that are benign, malignant, and normal. Eighty samples were collected from women who attended the Early Detection of Breast Diseases Center at Al-Hussein Medical City in Karbala from 1/12/2024 to 20/12/2025. The women were examined clinically by a specialist consultant. The tissue sample was collected by fine needle aspirate or tissue biopsy, and then analyzed by immunohistochemistry to detect its type, degree of cancer, as well as the expression rate of hormones. This study used ELISA to evaluate C1q, Properdin, C3, and C4 levels in the serum of 68 female participants: ductal (n = 25), lobular (n = 8), benign (n = 18), and healthy controls (n = 17).  Samples were obtained prior to treatment, stored at -20°C, and ethically approved.

Age and residence showed no significant differences between groups, but BMI, socioeconomic status, and education did. Most patients were overweight and had lower socioeconomic and educational levels. Hormone receptor positivity was highest in lobular carcinomas, while ductal tumors showed more triple-negative and basal-like subtypes. C1q levels were significantly higher in ductal carcinoma, while C3 was lower in benign lesions. C4 showed no significant variation. Properdin was reduced considerably in all pathological groups compared to controls, but did not differ among them. Correlations suggested complex immune-hormonal interactions. Findings support the potential of C1q and Properdin as diagnostic markers, though not for subtype distinction.

Author Biographies

Jaafar Khalaf Ali

Medical laboratory techniques, Karbala Technical Institute, Al-Furat Alawsat Technical University, Karbala, Iraq

Izzat Abdulsatar Al-Rayahi

Medical laboratory techniques, College of Health and Medical Technology, Middle Technical University, Baghdad, Iraq

Mohammed Flyyiah Treaf

Medical laboratory techniques, College of Health and Medical Technology, Middle Technical University, Baghdad, Iraq

References

1. Giaquinto AN, Sung H, Newman LA, Freedman RA, Smith RA, Star J, Jemal A, Siegel RL. Breast cancer statistics. CA Cancer J Clin. 2024; 74(6): 477-495. https://doi.org/10.3322/caac.21863.

2. AL-Thaweni, Amina N.; Yousif, Waleed H.; and Hassan, Sarah Salih. Detection of BRCA1and BRCA2 mutation for Breast Cancer in Sample of Iraqi Women above 40 Years. Baghdad Science Journal. 2010; 7(1): 14. https://doi.org/10.21123/bsj.2010.7.1.394-400.

3. Tsang, J. Y. S. & Tse, G. M. Molecular Classification of Breast Cancer. Adv Anat Pathol. 2020; 27 (1): 27–35. https://doi.org/10.1097/PAP.0000000000000232.

4. Poorolajal J, Heidarimoghis F, Karami M, Cheraghi Z, Gohari-Ensaf F, Shahbazi F, Zareie B, Ameri P, Sahraee F. Factors for the Primary Prevention of Breast Cancer: A Meta-Analysis of Prospective Cohort Studies. J Res Health Sci. 2021; 21(3): e00520. https://doi.org/10.34172/jrhs.2021.57.

5. Ali, J., Hassan, S. & Merzah, M. Prolactin serum levels and breast cancer: Relationships with hematological factors among cases in Karbala Province, Iraq. Medical Journal of Babylon. 2018; 15, 178. DOI:10.4103/MJBL.MJBL_40_18

6. Gore R W, Patil B U. Hormone Receptor Status in Breast Cancer and its Relation to Age and Other Prognostic Factors at Tertiary Care Hospital at Central India. 2020; 11(2): 164-169. https://dx.doi.org/10.21088/nijs.0976.4747.11220.14.

7. Hussein Hameedi, B., Hussain Mahdi, A. A. Al & Shalash Sultan, A. Estimation of Epidermal growth factor (EGF), HER2, CA15-3 and Acid phosphatase in Iraqi breast cancer women. Bionatura. 2022; 7(3) :1–6. https://doi.org/10.21931/RB/2022.07.03.40.

8. Orrantia-Borunda E, Anchondo-Nuñez P, Acuña-Aguilar LE, et al. Subtypes of Breast Cancer. In: Mayrovitz HN, editor. Breast Cancer. Brisbane (AU): Exon Publications; 2022; Chapter 3: 31-42 https://doi.org/10.36255/exon-publications-breast-cancer-subtypes.

9. Dembinski, R., Prasath, V., Bohnak, C. et al. Estrogen Receptor Positive and Progesterone Receptor Negative Breast Cancer: the Role of Hormone Therapy. HORM CANC. 2020; 11(3-4): 148–154. https://doi.org/10.1007/s12672-020-00387-1.

10. Viehweger F, Gusinde J, Leege N, Tinger LM, Gorbokon N, et al. Estrogen receptor expression in human tumors: A tissue microarray study evaluating more than 18,000 tumors from 149 different entities. Hum Pathol. 2025; 157: 105757-105767. https://doi.org/10.1016/j.humpath.2025.105757.

11. Carvalho E, Canberk S, Schmitt F, Vale N. Molecular Subtypes and Mechanisms of Breast Cancer: Precision Medicine Approaches for Targeted Therapies. Cancers. 2025; 17(7): 1102. https://doi.org/10.3390/cancers17071102.

12. Kumar RV, Panwar D, Amirtham U, Premalata CS, Gopal C, Narayana SM, Patil Okaly GV, Lakshmaiah KC, Krishnamurthy S. Estrogen receptor, Progesterone receptor, and human epidermal growth factor receptor-2 status in breast cancer: A retrospective study of 5436 women from a regional cancer center in South India. South Asian J Cancer. 2018; 7(1):7-10. https://doi.org/10.4103/sajc.sajc_211_17.

13. Yousef EM, Alswilem AM, Alfaraj ZS, Alhamood DJ, Ghashi GK, Alruwaily HS, Al Yahya SS, Alsaeed E. Incidence and Prognostic Significance of Hormonal Receptors and HER2 Status Conversion in Recurrent Breast Cancer: A Retrospective Study in a Single Institute. Medicina. 2025; 61(4): 563. https://doi.org/10.3390/medicina61040563.

14. Y.N. Khatamovna. 40P Molecular subtypes and imaging phenotypes of breast cancer: MRI. Annals of Oncology. 2020; 31: S1255-S1256. https://doi.org/10.1016/j.annonc.2020.10.060.

15. Khaled, H., Nada, Y.W., Ramadan, K.M. et al. Primary therapy of early breast cancer: Egyptian view of 2021 St. Gallen consensus. J Egypt Natl Canc Inst. 2022; 34(1): 56. https://doi.org/10.1186/s43046-022-00156-x.

16. Almansour NM. Triple-Negative Breast Cancer: A Brief Review About Epidemiology, Risk Factors, Signaling Pathways, Treatment and Role of Artificial Intelligence. Front. Mol. Biosci. 2022; 9: 836417. https://doi.org/10.3389/fmolb.2022.836417.

17. Merle, N.S. and Roumenina, L.T. The complement system as a target in cancer immunotherapy. Eur. J. Immunol. 2024; 54(10): 2350820. https://doi.org/10.1002/eji.202350820.

18. Nitta H, Murakami Y, Wada Y, Eto M, Baba H, Imamura T. Cancer cells release anaphylatoxin C5a from C5 by serine protease to enhance invasiveness. Oncol Rep. 2014; 32(4): 1715–1719. https://doi.org/10.3892/or.2014.3341.

19. Chen LH, Liu JF, Lu Y, He XY, Zhang C, Zhou HH. Complement C1q (C1qA, C1qB, and C1qC) May Be a Potential Prognostic Factor and an Index of Tumor Microenvironment Remodeling in Osteosarcoma. Front Oncol. 2021; 17(11): 642144. https://doi.org/10.3389/fonc.2021.642144.

20. Ma S, Song W, Xu Y, Si X, Zhang D, Lv S, Yang C, Ma L, Tang Z, Chen X. Neutralizing tumor-promoting inflammation with polypeptide-dexamethasone conjugate for microenvironment modulation and colorectal cancer therapy. Biomaterials. 2020; 232: 119676. https://doi.org/10.1016/j.biomaterials.2019.119676.

21. Pęczek, P., Gajda, M., Rutkowski, K. et al. Cancer-associated inflammation: pathophysiology and clinical significance. J Cancer Res Clin Oncol. 2023; 149: 2657–2672. https://doi.org/10.1007/s00432-022-04399-y.

22. Hanahan D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022; 12(1): 31-46. https://doi.org/10.1158/2159-8290.CD-21-1059.

23. Bonavita E, Gentile S, Rubino M, Maina V, Papait R, et al. PTX3 Is an Extrinsic Oncosuppressor Regulating Complement-Dependent Inflammation in Cancer. Cell. 2015; 160(4): 700–714. https://doi.org/10.1016/j.cell.2015.01.004.

24. Revel M, Daugan MV, Sautés-Fridman C, Fridman WH, Roumenina LT. Complement System: Promoter or Suppressor of Cancer Progression? Antibodies (Basel). 2020; 9(4): 57. https://doi.org/10.3390/antib9040057.

25. Senent Y, Tavira B, Pio R, Ajona D. The complement system as a regulator of tumor-promoting activities mediated by myeloid-derived suppressor cells. Cancer Lett. 2022; 549: 215900. https://doi.org/10.1016/j.canlet.2022.215900.

26. Fishelson, Z. & Kirschfink, M. Complement C5b-9 and Cancer: Mechanisms of Cell Damage, Cancer Counteractions, and Approaches for Intervention. Front Immunol. 2019; 10: 752. https://doi.org/10.3389/fimmu.2019.00752.

27. Lin WD, Fan TC, Hung JT, Yeo HL, Wang SH, Kuo CW, Khoo KH, Pai LM, Yu J, Yu AL. Sialylation of CD55 by ST3GAL1 Facilitates Immune Evasion in Cancer. Cancer Immunol Res. 2021; 9(1): 113–122. https://doi.org/10.1158/2326-6066.CIR-20-0203.

28. Shu C, Zha H, Long H, Wang X, Yang F, Gao J, Hu C, Zhou L, Guo B, Zhu B. C3a-C3aR signaling promotes breast cancer lung metastasis via modulating carcinoma associated fibroblasts. Journal of Experimental & Clinical Cancer Research. 2020; 39(1): 11. https://doi.org/10.1186/s13046-019-1515-2.

29. Popeda M, Markiewicz A, Stokowy T, Szade J, Niemira M, Kretowski A, Bednarz-Knoll N, Zaczek AJ. Reduced expression of innate immunity-related genes in lymph node metastases of luminal breast cancer patients. Sci Rep. 2021; 11: 5097. https://doi.org/10.1038/s41598-021-84568-0.

30. Mamoor S. C3 Is Differentially Expressed in Both Lymph Node and Brain Metastases in Human Breast Cancer. OSF Preprints. 2021; 21. https://doi.org/10.31219/osf.io/r89pn_v1.

31. Hameed, B. H., Abdulsatar Al-Rayahi, I. & Muhsin, S. S. The Preoperative Serum Levels of the Anaphylatoxins C3a and C5a and Their Association with Clinico-Pathological Factors in Breast Cancer Patients. Arch Razi Inst. 2022; 77(5): 1873–1879. https://doi.org/10.22092/ARI.2022.358193.2173.

32. Ajona, D., Ortiz-Espinosa, S., Pio, R. & Lecanda, F. Complement in Metastasis: A Comp in the Camp. Front Immunol. 2019; 10: 669. https://doi.org/10.3389/fimmu.2019.00669.

33. El-Maboud Suliman, Lucy A. Moawad, Amr A. Elshahawy, Heba Abdalla, Dina. Role of complement activation product C4d as a predictor biomarker in lung cancer diagnosis: a case–control study. The Egyptian Journal of Chest Diseases and Tuberculosis. 2021; 70(2): 231-235. https://doi.org/10.4103/ejcdt.ejcdt_92_20.

34. Golay, J. & Taylor, R. P. The Role of Complement in the Mechanism of Action of Therapeutic Anti-Cancer mAbs. Antibodies. 2020; 9 (4): 58. https://doi.org/10.3390/antib9040058.

35. Roumenina, L. T., Daugan, M. V., Petitprez, F., Sautès-Fridman, C. & Fridman, W. H. Context-dependent roles of complement in cancer. Nat Rev Cancer. 2019; 19: 698–715. https://doi.org/10.1038/s41568-019-0210-0.

36. Hammond ME, Hayes DF, Dowsett M, Allred DC, Hagerty KL, et al. American Society of Clinical Oncology/College of American Pathologists Guideline Recommendations for Immunohistochemical Testing of Estrogen and Progesterone Receptors in Breast Cancer (Unabridged Version). Arch Pathol Lab Med. 2010; 134(7): e48–e72. https://doi.org/10.5858/134.7.e48.

37. Sadeghi, M., Vahid, F., Rahmani, D., Akbari, M. E. & Davoodi, S. H. The Association between Dietary Patterns and Breast Cancer Pathobiological Factors Progesterone Receptor (PR) and Estrogen Receptors (ER): New Findings from Iranian Case-Control Study. Nutr Cancer. 2019; 71(8): 1290–1298. https://doi.org/10.1080/01635581.2019.1602658.

38. Walter V, Fischer C, Deutsch TM, Ersing C, Nees J, Schütz F, Fremd C, Grischke EM, Sinn P, Brucker SY, Schneeweiss A, Hartkopf AD, Wallwiener M. Estrogen, progesterone, and human epidermal growth factor receptor 2 discordance between primary and metastatic breast cancer. Breast Cancer Res Treat. 2020; 183:137-144. https://doi.org/10.1007/s10549-020-05746-8.

39. Roshed, M. M., Kamal, S., Hossain, S. M. & Akhtar, S. Evaluation of Breast Cancer Subtypes Based on ER/PR and Her2 Expression: A Clinicopathologic Study of Hormone Receptor Status (ER/PR/HER2-neu) in Breast Cancer. Faridpur Medical College Journal. 2020; 14(1): 8–12. https://doi.org/10.3329/fmcj.v14i1.46158.

40. Aman NA, Doukoure B, Koffi KD, Koui BS, Traore ZC, Kouyate M, Effi AB. HER2 overexpression and correlation with other significant clinicopathologic parameters in Ivorian breast cancer women. BMC Clin Pathol. 2019; 19: 1-6. https://doi.org/10.1186/s12907-018-0081-4.

41. Sohail, S. K., Sarfraz, R., Imran, M., Kamran, M. & Qamar, S. Estrogen and Progesterone Receptor Expression in Breast Carcinoma and Its Association with Clinicopathological Variables Among the Pakistani Population. Cureus. 2020; 12(8): e9751. https://doi.org/10.7759/cureus.9751.

42. Aldaz-Roldán P, Pardo-Vásquez DF, Chamba-Morales GN, Aguirre-Reyes DF, Castillo-Calvas JM, Noblecilla-Arévalo G. Immunohistochemical subtype and its relationship with 5-year overall survival in breast cancer patients. Ecancermedicalscience. 2023; 16(17): 1509. https://doi.org/10.3332/ecancer.2023.1509.

43. Bowen DJ, Fernandez Poole S, White M, Lyn R, Flores DA, Haile HG, Williams DR. The Role of Stress in Breast Cancer Incidence: Risk Factors, Interventions, and Directions for the Future. Int J Environ Res Public Health. 2021; 18(4): 1871. https://doi.org/10.3390/ijerph18041871.

44. Koval, L. E., Dionisio, K. L., Friedman, K. P., Isaacs, K. K. & Rager, J. E. Environmental mixtures and breast cancer: identifying co-exposure patterns between understudied vs breast cancer-associated chemicals using chemical inventory informatics. J Expo Sci Environ Epidemiol. 2022; 32: 794–807. https://doi.org/10.1038/s41370-022-00451-8.

45. Michał Kunc, Marta Popęda, Michał Bieńkowski, Marcin Braun, Aleksandra Łacko. Estrogen receptor-negative progesterone receptor-positive breast cancer is a molecularly distinct group characterized by the down-regulation of genes controlled by ESR1 and SUZ12. Cancer Res. 2023; 83(5_Supplement): 2–23–06. https://doi.org/10.1158/1538-7445.SABCS22-P2-23-06.

46. He Dou, Fucheng Li, Youyu Wang, Xingyan Chen, Pingyang Yu. et al. Estrogen receptor-negative/progesterone receptor-positive breast cancer has distinct characteristics and pathologic complete response rate after neoadjuvant chemotherapy. Diagn Pathol. 2024; 19: 5. https://doi.org/10.1186/s13000-023-01433-6.

47. Li Y, Yang D, Yin X, Zhang X, Huang J, Wu Y, Wang M, Yi Z, Li H, Li H, Ren G. Clinicopathological Characteristics and Breast Cancer–Specific Survival of Patients with Single Hormone Receptor–Positive Breast Cancer. JAMA Netw Open. 2020; 3(1): e1918160. https://doi.org/10.1001/jamanetworkopen.2019.18160.

48. Sarmah, A., Das, A. & Datta, D. A study to determine the incidence of estrogen receptor (ER) and progesterone receptor (PR) expression in different histological grades of breast cancer. J Histotechnol. 2014; 37(2): 54–59. https://doi.org/10.1179/2046023614Y.0000000042.

49. Ruqayah Ali Salman. Immunohistochemical Determination of Estrogen and Progesterone Receptors in Women Breast Cancer Patients. J. Med. Chem. Sci. 2022; 5(7): 1224-1230. https://doi.org/10.26655/JMCHEMSCI.2022.7.11.

50. Hussain, Abeer M.; Ali, Alia Hussein; and Mohammed, Haider Latif. Correlation between Serum and Tissue Markers in Breast Cancer Iraqi Patients. Baghdad Science Journal. 2022; 19(3): 501-514. https://doi.org/10.21123/bsj.2022.19.3.0501

51. Quaquarini E, Grillo F, Gervaso L, Arpa G, Fazio N, Vanoli A, Parente P. Prognostic and Predictive Roles of HER2 Status in Non-Breast and Non-Gastroesophageal Carcinomas. Cancers. 2024; 16(18): 3145. https://doi.org/10.3390/cancers16183145.

52. Mukhtar Z, Faisal A, Mudassir G, Mamoon N. Correlation between HER2/neu protein overexpression on Immunohistochemistry and Fluorescent in Situ Hybridization (FISH) in breast carcinoma: Problems in developing countries. Pak J Med Sci. 2023; 39(6): 1814-1817. https://doi.org/10.12669/pjms.39.6.6704.

53. Shukla S, Singh BK, Pathania OP, Jain M. Evaluation of HER2/neu oncoprotein in serum & tissue samples of women with breast cancer. Indian J Med Res. 2016; 143(Suppl.1): S52-S58. https://doi.org/10.4103/0971-5916.191769.

54. Poon IK, Tsang JY, Li J, Chan SK, Shea KH, Tse GM. The significance of highlighting the oestrogen receptor low category in breast cancer. Br J Cancer. 2020; 123: 1223–1227. https://doi.org/10.1038/s41416-020-1009-1.

55. Roumenina, L. T., Daugan, M. V., Petitprez, F., Sautès-Fridman, C. & Fridman, W. H. Context-dependent roles of complement in cancer. Nat Rev Cancer. 2019; 19: 698–715. https://doi.org/10.1038/s41568-019-0210-0.

56. Ajona, D., Ortiz-Espinosa, S., Pio, R. & Lecanda, F. Complement in Metastasis: A Comp in the Camp. Front Immunol. 2019; 10: 669. https://doi.org/10.3389/fimmu.2019.00669.

57. Hammody, R. H., M. Q. Al-ani, and F. A. Turkey. “serum immunoglobulin and complement levels in patients with breast cancer in Iraq”. Asian Journal of Pharmaceutical and Clinical Research. 2018; 11(6): 473-5, https://doi.org/10.22159/ajpcr.2018.v11i6.25060.

58. Michlmayr A, Bachleitner-Hofmann T, Baumann S, Marchetti-Deschmann M, Rech-Weichselbraun I, et al. Modulation of plasma complement by the initial dose of epirubicin/docetaxel therapy in breast cancer and its predictive value. Br J Cancer. 2010; 103: 1201–1208. https://doi.org/10.1038/sj.bjc.6605909.

59. Lu Y, Zhao Q, Liao JY, Song E, Xia Q, Pan J, Li Y, Li J, Zhou B, Ye Y, Di C, Yu S, Zeng Y, Su S. Complement Signals Determine Opposite Effects of B Cells in Chemotherapy-Induced Immunity. Cell. 2020; 180(6): 1081-1097.e24. https://doi.org/10.1016/j.cell.2020.02.015.

60. Anna Felberg, Michał Bieńkowski, Tomasz Stokowy, Kamil Myszczyński, Zuzanna Polakiewicz, et al. Elevated expression of complement factor I in lung cancer cells associates with shorter survival–Potentially via non-canonical mechanism. Translational Research. 2024; 269: 1-13. https://doi.org/10.1016/j.trsl.2024.02.003.

61. Lin CH, Huang RY, Lu TP, Kuo KT, Lo KY, Chen CH, Chen IC, Lu YS, Chuang EY, Thiery JP, Huang CS, Cheng AL. High prevalence of APOA1/C3/A4/A5 alterations in luminal breast cancers among young women in East Asia. NPJ Breast Cancer. 2021; 7(1): 88. https://doi.org/10.1038/s41523-021-00299-5.

62. Hong Q, Sze CI, Lin SR, Lee MH, He RY, Schultz L, Chang JY, Chen SJ, Boackle RJ, Hsu LJ, Chang NS. Complement C1q Activates Tumor Suppressor WWOX to Induce Apoptosis in Prostate Cancer Cells. PLoS One. 2009; 4(6): e5755. https://doi.org/10.1371/journal.pone.0005755.

63. Bandini S, Macagno M, Hysi A, Lanzardo S, Conti L, Bello A, Riccardo F, Ruiu R, Merighi IF, Forni G, Iezzi M, Quaglino E, Cavallo F. The non-inflammatory role of C1q during Her2/neu-driven mammary carcinogenesis. Oncoimmunology. 2016; 5(12): e1253653. https://doi.org/10.1080/2162402X.2016.1253653.

64. Zabihi, M. R., Farhadi, B. & Akhoondian, M. Complement protein expression changes in various conditions of breast cancer: in-silico analyses—experimental research. Ann. Med. Surg. 2024; 86(9): 5152–5161. https://doi.org/10.1097/MS9.0000000000002216.

65. Mangogna A, Agostinis C, Bonazza D, Belmonte B, Zacchi P, Zito G, Romano A, Zanconati F, Ricci G, Kishore U, Bulla R. Is the Complement Protein C1q a Pro- or Anti-tumorigenic Factor? Bioinformatics Analysis Involving Human Carcinomas. Front Immunol. 2019; 10: 865. https://doi.org/10.3389/fimmu.2019.00865.

66. Bandini S, Macagno M, Hysi A, Lanzardo S, Conti L, Bello A, Riccardo F, Ruiu R, Merighi IF, Forni G, Iezzi M, Quaglino E, Cavallo F. The non-inflammatory role of C1q during Her2/neu-driven mammary carcinogenesis. Oncoimmunology. 2016; 5(12): e1253653. https://doi.org/10.1080/2162402X.2016.1253653.

67. Kaur A, Sultan SH, Murugaiah V, Pathan AA, Alhamlan FS, Karteris E, Kishore U. Human C1q Induces Apoptosis in an Ovarian Cancer Cell Line via Tumor Necrosis Factor Pathway. Front Immunol. 2016; 21(7): 599. https://doi.org/10.3389/fimmu.2016.00599.

68. Bulla R, Tripodo C, Rami D, Ling GS, Agostinis C, Guarnotta C, Zorzet S, Durigutto P, Botto M, Tedesco F. C1q acts in the tumour microenvironment as a cancer-promoting factor independently of complement activation. Nat Commun. 2016; 1(7): 10346. https://doi.org/10.1038/ncomms10346.

69. Mangogna A, Agostinis C, Bonazza D, Belmonte B, Zacchi P, Zito G, Romano A, Zanconati F, Ricci G, Kishore U, Bulla R. Is the Complement Protein C1q a Pro- or Anti-tumorigenic Factor? Bioinformatics Analysis Involving Human Carcinomas. Front Immunol. 2019; 3(10): 865. https://doi.org/10.3389/fimmu.2019.00865.

70. van Essen, M.F., Schlagwein, N., van den Hoven, E.M.P., van Gijlswijk-Janssen, D.J., Lubbers, R., van den Bos, R.M., van den Born, J., Ruben, J.M., Trouw, L.A., van Kooten, C. Initial properdin binding contributes to alternative pathway activation at the surface of viable and necrotic cells. Eur. J. Immunol. 2022; 52: 597-608. https://doi.org/10.1002/eji.202149259.

71. Mangogna A, Varghese PM, Agostinis C, Alrokayan SH, Khan HA, Stover CM, Belmonte B, Martorana A, Ricci G, Bulla R, Kishore U. Prognostic Value of Complement Properdin in Cancer. Front Immunol. 2021; 19(11): 614980. https://doi.org/10.3389/fimmu.2020.614980.

72. Uday Kishore, Praveen M Varghese, Alessandro Mangogna, Lukas Klein, Mengyu Tu, et al. Neutrophil-derived complement factor P induces cytotoxicity in basal-like cells via caspase 3/7 activation in pancreatic cancer. bioRxiv preprint. 2023; 10(28): 564512. https://doi.org/10.1101/2023.10.28.564512.

73. Al-Rayahi, I. A. M., Machado, L. R. & Stover, C. M. Properdin Is a Modulator of Tumour Immunity in a Syngeneic Mouse Melanoma Model. Medicina (B Aires). 2021; 57(2): 85. https://doi.org/10.3390/medicina57020085.

74. Saeed, Z., Greer, O. & Shah, N. M. Is the Host Viral Response and the Immunogenicity of Vaccines Altered in Pregnancy? Antibodies. 2020; 9(3): 38. https://doi.org/10.3390/antib9030038.

75. Reis, E. S., Mastellos, D. C., Ricklin, D., Mantovani, A. & Lambris, J. D. Complement in cancer: untangling an intricate relationship. Nat Rev Immunol. 2018; 18(1): 5–18. https://doi.org/10.1038/nri.2017.97.

76. Murugaiah V, Varghese PM, Beirag N, De Cordova S, Sim RB, Kishore U. Complement Proteins as Soluble Pattern Recognition Receptors for Pathogenic Viruses. Viruses. 2021; 13(5): 824. https://doi.org/10.3390/v13050824.

Downloads

Published

2025-08-04