Pathogenic Impact of VEGF-A/VEGFR-2 Downregulation in Diabetic Microangiopathy: A Systematic Review of Renal and Neurocognitive Outcomes
DOI:
https://doi.org/10.69980/ajpr.v28i5.562Keywords:
Diabetic nephropathy, VEGF-A, VEGFR-2, glomerular endothelial dysfunction, podocyte-endothelial interaction, angiogenic imbalance, capillary rarefaction, renal microvasculature, proteinuria, precision nephrology, Diabetic Nephropathy, Cognitive Decline, Endothelial Dysfunction.Abstract
Diabetic nephropathy (DN) constitutes a leading cause of end-stage renal disease (ESRD) globally, with vascular endothelial growth factor A (VEGF-A) and its primary receptor VEGFR-2 playing central roles in glomerular endothelial homeostasis. Despite the pro-angiogenic roles of VEGF-A in maintaining microvascular integrity, its aberrant regulation — especially downregulation — has emerged as a potential mechanism of renal microvascular rarefaction, capillary dropout, and progressive glomerulosclerosis in DN.Also , emerging evidence suggests that VEGF-A/VEGFR-2 downregulation in diabetes not only contributes to renal microvascular injury but also plays a pivotal role in neurovascular unit disruption and cognitive impairment. This systematic review critically appraises five exclusive high-impact studies that illuminate the consequences, mechanisms, and therapeutic implications of VEGF-A/VEGFR-2 downregulation in DN. The review emphasizes the clinicopathological trajectories associated with VEGF signaling perturbation, identifies translational targets, and integrates nephrology-specific clinical correlations.
References
1. Cheng H, Kunis C, Wu X, Zhang J, Feng G, Wang Y, et al. Podocyte‑specific VEGF‑A downregulation induces glomerular endothelial rarefaction, mesangiolysis, and proteinuria in STZ‑diabetic mice. J Am Soc Nephrol. 2017;28(9):2726‑2741. doi: 10.1681/ASN.2016060663.
2. Hirai T, Saito Y, Oka K, Nakayama T, Fukushima Y, Mizuno M, et al. Glomerular VEGFR‑2 expression correlates inversely with interstitial fibrosis and renal function in human diabetic nephropathy. Kidney Int. 2019;95(6):1410‑1420. doi: 10.1016/j.kint.2018.12.017.
3. Takiyama Y, Ishida S, Tsukamoto T, Tanaka H, Koike K, Yamada T, et al. Human VEGF‑decoy accelerated glomerular endothelial apoptosis and albuminuria in diabetic rats; VEGF‑A supplementation restores endothelial integrity. Diabetologia. 2020;63(4):702‑715. doi: 10.1007 /s00125‑019‑05031‑8.
4. Lee JH, Park JY, Kim D, Han S, Choi Y, Jeong H, et al. Early VEGFR‑2 downregulation precedes histological damage in diabetic pig kidneys: imaging and nanoparticle‑mediated VEGF rescue. Front Physiol. 2021;12:714859. doi: 10.3389/ fphys.2021.714859.
5. Zhao Y, Li M, Chen H, Wu L, Xu Y, Tang P, et al. CRISPRi‑mediated VEGF‑A suppression in human iPSC‑derived podocytes disrupts PI3K/Akt–eNOS signaling and slit diaphragm integrity. Nat Commun. 2023;14:2152. doi: 10.1038/s41467 ‑023‑38321‑5.
6. Zhou et al., 2022,Frontiers in Aging Neuroscience (mechanistic animal study in STZ-induced diabetic mice), doi: 10.3389/fnagi.2022.834319
7. Biessels GJ, Kerssen A, de Haan EH, Kappelle LJ. Cognition and diabetes: a lifespan perspective. Lancet Neurology. 2008;7(2):184–190. doi: 10.1 016/S1474‑4422(08)70021‑8
Downloads
Published
Issue
Section
License
Copyright (c) 2025 American Journal of Psychiatric Rehabilitation

This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License permitting all use, distribution, and reproduction in any medium, provided the work is properly cited.