The Effect of Storage Duration and Temperature on the Biochemical and Physiological Quality of Red Blood Cells

Authors

  • Moamen Abdelfadil Ismail
  • Taif Khaled
  • Meshari Bakheet Alsaedi
  • Nawal Hamzah Hawsawi
  • Abdulrhman Hezam Faleh Alshahrani
  • Alaa Moslem M Albahrani
  • Najwa Saleh Aljehani
  • Hiba Hisham Bahmdan
  • Lina Saeed Ali Alrodan
  • Mohammad Ibrahim Asiri
  • Turki Khalil
  • Shouq Abdullah Alhawiti

DOI:

https://doi.org/10.69980/ajpr.v28i5.610

Keywords:

Red blood cells, storage lesion, microvesiculation, deformability, hemolysis, transfusion, blood storage temperature, metabolic aging

Abstract

Background: Red blood cell (RBC) storage induces biochemical and biophysical changes that impair cell quality and transfusion efficacy. Understanding these storage lesions is critical to optimize blood banking practices.

Objective: This study investigates the effects of storage duration and temperature on RBC membrane integrity, deformability, metabolic status, and hemolysis.

Methods: RBC units were stored under controlled temperature conditions, and samples were analyzed periodically for membrane composition, microvesiculation, rheological properties, morphology, metabolic markers, and hemolysis rates.

Results: Prolonged storage resulted in significant membrane alterations, increased microvesiculation, reduced deformability, metabolic decline, and elevated hemolysis, particularly at suboptimal temperatures.

Conclusions: Storage duration and temperature critically affect RBC quality, emphasizing the need for improved storage protocols to enhance transfusion outcomes.

Author Biographies

Moamen Abdelfadil Ismail

Consultant, King Abdulaziz Specialist Hospital - Sakaka – Aljouf

Taif Khaled

Laboratory

Meshari Bakheet Alsaedi

Laboratory, Ministry of National Guard Health Affair

Nawal Hamzah Hawsawi

Laboratory

Abdulrhman Hezam Faleh Alshahrani

Laboratory

Alaa Moslem M Albahrani

Laboratory

Najwa Saleh Aljehani

Lab Technician

Hiba Hisham Bahmdan

Clinical Biochemistry, Imam Abdulrahman Bin Faisal University

Lina Saeed Ali Alrodan

MOH, Clinical Laboratory

Mohammad Ibrahim Asiri

Lab Specialist

Turki Khalil

Medical Laboratory

Shouq Abdullah Alhawiti

Laboratory Specialties, Armed Forces Hospital Wadi Aldawaser

References

1. Almizraq, R., Tchir, J. D. R., Holovati, J. L., & Acker, J. P. (2013). Storage of red blood cells affects membrane composition, microvesiculation, and in vitro quality. Transfusion, 53(10), 2258–2267.

2. Berezina, T. L., Zaets, S. B., Morgan, C., Spillert, C. R., Kamiyama, M., Spolarics, Z., & Deitch, E. A. (2002). Influence of storage on red blood cell rheological properties. Transfusion, 42(7), 845–850.

3. Blaine, K. P., Cortés-Puch, I., Sun, J., Wang, D., Solomon, S. B., Feng, J., Gladwin, M. T., Kim-Shapiro, D. B., Basu, S., Perlegas, A., West, K., Klein, H. G., & Natanson, C. (2019). Impact of different standard red blood cell storage temperatures on human and canine RBC hemolysis and chromium survival. Transfusion, 59(1), 347–358.

4. D'Alessandro, A., Gray, A. D., & Szczepiorkowski, Z. M. (2017). Red blood cell metabolic responses to refrigerated storage, rejuvenation, and frozen storage. Transfusion, 57(3), 604–615.

5. Garcia-Roa, M., Del Carmen Vicente-Ayuso, M., Bobes, A. M., Pedraza, A. C., González-Fernández, A., Martín, M. P., Sáez, I., Seghatchian, J., & Gutiérrez, L. (2017). Red blood cell storage time and transfusion: Current practice, concerns and future perspectives. Blood Transfusion, 15(3), 222–231.

6. Geekiyanage, N., Sauret, E., Saha, S., Flower, R., & Gu, Y. (2020). Modelling of red blood cell morphological and deformability changes during in-vitro storage. Applied Sciences, 10(9), 3209.

7. Hess, J. R. (2014). Measures of stored red blood cell quality. Vox Sanguinis, 107(1), 1–9.

8. Hod, E. A., et al. (2011). Transfusion of red blood cells stored for shorter vs longer duration and mortality in patients undergoing cardiac surgery. New England Journal of Medicine, 364(1), 3–13.

9. Mennella, C., Maniscalco, U., De Pietro, G., & Esposito, M. (2024). Ethical and regulatory challenges of AI technologies in healthcare: A narrative review. Heliyon, 10(4), e26297.

10. Orlov, D., & Karkouti, K. (2015). The pathophysiology and consequences of red blood cell storage. Anaesthesia, 70(1), 29–37.

11. Paglia, G., D'Alessandro, A., Rolfsson, Ó., Sigurjónsson, Ó. E., Bordbar, A., Palsson, S., ... Palsson, B. O. (2016). Biomarkers defining the metabolic age of red blood cells during cold storage. Blood, 128(13), e43–e50.

12. Pellegrino, C., Stone, E. F., Valentini, C. G., & Teofili, L. (2024). Fetal red blood cells: A comprehensive review of biological properties and implications for neonatal transfusion. Cells, 13(22), 1843.

13. Raykar, N. P., Raguveer, V., Abdella, Y. E., Ali-Awadh, A., Arora, H., Asamoah-Akuoko, L., Barnes, L. S., Cap, A. P., Chowdhury, A., Cooper, Z., Delaney, M., DelSignore, M., Inam, S., Ismavel, V. A., Jensen, K., Kumar, N., Lokoel, G., Mammen, J. J., Nathani, P., ... Wangamati, C. W. (2024). Innovative blood transfusion strategies to address global blood deserts: A consensus statement from the Blood Delivery via Emerging Strategies for Emergency Remote Transfusion (Blood DESERT) Coalition. The Lancet Global Health, 12(3), e522–e529.

14. Relevy, H., Koshkaryev, A., Manny, N., Yedgar, S., & Barshtein, G. (2007). Blood banking-induced alteration of red blood cell flow properties. Transfusion, 47(1), 80–88.

15. Roback, J. D. (2016). Perspectives on the impact of storage duration on blood quality and transfusion outcomes. Vox Sanguinis, 111(4), 357–364.

16. Tran, L. N. T., & González-Fernández, C. (2024). Impact of different red blood cell storage solutions and conditions on cell function and viability: A systematic review. Biomolecules, 14(8), 813.

17. Uyuklu, M., Cengiz, M., Ulker, P., & Hever, T. (2009). Effects of storage duration and temperature of human blood on red cell deformability and aggregation. Clinical Hemorheology and Microcirculation, 43(3), 283–296.

18. Verma, M., Dahiya, K., Malik, D., & Sehgal, P. K. (2015). Effect of blood storage on complete biochemistry. International Journal of Biological & Medical Research, 6(1), 4714–4720.

19. Wagner, T., Pabst, M. A., Leitinger, G., & Reiter, U. (2014). Impact of constant storage temperatures and multiple warming cycles on the quality of stored red blood cells. Vox Sanguinis, 106(4), 329–337.

20. Yoshida, T., Prudent, M., & D'Alessandro, A. (2019). Red blood cell storage lesion: Causes and potential clinical consequences. Blood Transfusion, 17(1), 27–52.

21. Zimring, J. C., et al. (2015). Storage of red blood cells and immunomodulation. Transfusion Medicine Reviews, 29(1), 35–41.

Downloads

Published

2025-08-20