Three-Dimensional Morphometric Analysis of Human Cranial Sutures: Insights into Age-Related Variations
DOI:
https://doi.org/10.69980/ajpr.v28i5.630Keywords:
cranial sutures; morphometric analysis; psychiatric rehabilitation; cognitive aging; neurodevelopmentAbstract
The age-related modifications of the cranial suture morphology are of equal importance to clinical psychiatry and rehabilitation as they are of forensic interest. The pattern of suture closure has been shown to alter cranial development and is also suspected to play a role in craniofacial dysmorphias and possible cognitive deficiency. Advanced morphometric definition of such transformations promises to provide valuable information to support the rehabilitation of psychiatry, because the correlation of the structure of the head with functional aspects of ageing and neurocognitive status is important. The analysis utilised the three-dimensional surface scanning and geometric morphometric methods to examine the cranial suture geometry at a large age interval. Geometric morphometrics using the landmarks, Procrustes superimposition and principal component analysis (PCA), were used to measure suture morphology. Multiple regressions were used to investigate the inter-relationship between chronological age, suture patterns and neurodevelopmental integrity implications. The results indicated a close age-related variation with intertwined sutures of complex morphology in younger specimens, which become simplified and partially obliterated in older skulls. CA explained 81% of the morphological differences and distinguished between younger and older ones. Analysis of regression indicated a strong correlation between suture simplification and age, which may have implications on the study of craniofacial contributions to cognitive aeing, thus offering a new avenue of inquiry in relation to psychiatric rehabilitation. The implications of these findings are the transferability of structural markers to the integrative interdisciplinary development of rehabilitation interventions.
References
1. Abushehab, A., Rames, J. D., Hussein, S. M., Meire Pazelli, A., Sears, T. A., Wentworth, A. J., Morris, J. M., & Sharaf, B. A. (2024). Midface Skeletal Sexual Dimorphism: Lessons Learned from Advanced Three-dimensional Imaging in the White Population. Plastic and reconstructive surgery. Global open, 12(10), e6215. https://doi.org/10.1097/GOX.0000000000006215
2. Albuhairan, R., Alqahtani, L., Aljebeli, S., Shilash, O. B., Sultan, A., Althuwaini, A., Alhammad, A., & Aljared, T. (2025). Exploring Pediatric Sutural Variations with Three-Dimensional Computed Tomography Imaging: A Retrospective Study at a Tertiary Hospital. World neurosurgery, 194, 123599. https://doi.org/10.1016 /j.wneu.2024.123599
3. Bergmann, I., Hublin, J. J., Gunz, P., & Freidline, S. E. (2021). How did modern morphology evolve in the human mandible? The relationship between static adult allometry and mandibular variability in Homo sapiens. Journal of human evolution, 157, 103026. https://doi.org/10.1016/j.jhevol.2021.103026
4. Chawla, H., Shankar, S., Tyagi, A., & Panchal, J. (2023). Cranial Vault Suture Obliteration in Relation to Age: An Autopsy-Based Observational Study. Cureus, 15(5), e39759. https://doi.org/10.7759/cureus.39759
5. Costa Mendes, L., Delrieu, J., Gillet, C., Telmon, N., Maret, D., & Savall, F. (2021). Sexual dimorphism of the mandibular conformational changes in aging human adults: A multislice computed tomographic study by geometric morphometrics. PloS one, 16(6), e0253564. https://doi.org/10.1371/journal.pone.0253564
6. Cox S. L. (2021). A geometric morphometric assessment of shape variation in adult pelvic morphology. American journal of physical anthropology, 176(4), 652–671. https://doi.org/10.1002/ajpa.24399
7. Desai, P., Awatiger, M. M., & Angadi, P. P. (2023). Geometrics Morphometrics in Craniofacial Skeletal Age Estimation - A Systematic Review. The Journal of forensic odonto-stomatology, 41(1), 57–64.
8. Erdem, H., Tekeli, M., Cevik, Y., Kilic Safak, N., Kaya, O., Boyan, N., & Oguz, O. (2023). Three-Dimensional (3D) Analysis of Orbital Morphometry in Healthy Anatolian Adults: Sex, Side Discrepancies, and Clinical Relevance. Cureus, 15(9), e45208. https://doi.org/10.7759/cureus.45208
9. Evlice, B., Çabuk, D. S., & Duyan, H. (2021). The evaluation of superior semicircular canal bone thickness and radiological patterns in relation to age and gender. Surgical and radiologic anatomy : SRA, 43(11), 1839–1844. https://doi.org/10.1007/s00276-021-02797-4
10. Fourgeot, E., Graillon, N., Savoldelli, C., Dessi, P., Adalian, P., Michel, J., & Radulesco, T. (2021). Intra-Individual Aging of the Facial Skeleton. Aesthetic surgery journal, 41(12), NP1907–NP1915. https://doi.org/10.1093 /asj/sjab228
11. Hughes, E. C. M., Rosenbaum, D. G., Branson, H. M., Tshuma, M., Marie, E., Frayn, C. S., Rajani, H., & Gerrie, S. K. (2024). Imaging approach to pediatric calvarial bulges. Pediatric radiology, 54(10), 1603–1617. https://doi.org/10.1007/s00247-024-05967-9
12. Klionsky, D. J., Abdel-Aziz, A. K., Abdelfatah, S., Abdellatif, M., Abdoli, A., Abel, S., Abeliovich, H., Abildgaard, M. H., Abudu, Y. P., Acevedo-Arozena, A., Adamopoulos, I. E., Adeli, K., Adolph, T. E., Adornetto, A., Aflaki, E., Agam, G., Agarwal, A., Aggarwal, B. B., Agnello, M., Agostinis, P., … Tong, C. K. (2021). Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1. Autophagy, 17(1), 1–382. https://doi.org/10.1080/15548627.2020.1797280
13. Liang, C., Profico, A., Buzi, C., Khonsari, R. H., Johnson, D., O'Higgins, P., & Moazen, M. (2023). Normal human craniofacial growth and development from 0 to 4 years. Scientific reports, 13(1), 9641. https://doi.org/10.1038 /s41598-023-36646-8
14. Nikolova, S., Toneva, D., Tasheva-Terzieva, E., & Lazarov, N. (2022). Cranial morphology in metopism: A comparative geometric morphometric study. Annals of anatomy = Anatomischer Anzeiger : official organ of the Anatomische Gesellschaft, 243, 151951. https://doi.org/10.1016/j.aanat.2022.151951
15. Özen, K. E., Yeşil, H. K., & Malas, M. A. (2023). Morphometric and morphological evaluation of temporozygomatic suture anatomy in dry adult human skulls. Anatomical science international, 98(2), 249–259. https://doi.org/10.1007/ s12565-022-00694-3
16. Palancar, C. A., García-Martínez, D., Cáceres-Monllor, D., Perea-Pérez, B., Ferreira, M. T., & Bastir, M. (2021). Geometric Morphometrics of the human cervical vertebrae: sexual and population variations. Journal of anthropological sciences = Rivista di antropologia : JASS, 99, 97–116. Advance online publication. https://doi.org/10.4436/JASS.99015
17. Raoul-Duval, J., Ganet, A., Benichi, S., Baixe, P., Cornillon, C., Eschapasse, L., Geoffroy, M., Paternoster, G., James, S., Laporte, S., Blauwblomme, T., Khonsari, R. H., & Taverne, M. (2024). Geometric growth of the normal human craniocervical junction from 0 to 18 years old. Journal of anatomy, 245(6), 842–863. https://doi.org/10.1111 /joa.14067
18. Rutland, J. W., Bellaire, C. P., Yao, A., Arrighi-Allisan, A., Napoli, J. G., Delman, B. N., & Taub, P. J. (2021). The Expanding Role of Geometric Morphometrics in Craniofacial Surgery. The Journal of craniofacial surgery, 32(3), 1104–1109. https://doi.org/10.1097/SCS.0000000000007362
19. Vassis, S., Bauss, O., Noeldeke, B., Sefidroodi, M., & Stoustrup, P. (2023). A novel method for assessment of human midpalatal sutures using CBCT-based geometric morphometrics and complexity scores. Clinical oral investigations, 27(8), 4361–4368. https://doi.org/10.1007/s00784-023-05055-6
20. Vatzia, K., Fanariotis, M., Bugajski, M., Fezoulidis, I. V., Piagkou, M., Vlychou, M., Triantafyllou, G., Vezakis, I., Botis, G., Papadodima, S., Matsopoulos, G., & Vassiou, K. (2025). Assessing Sternal Dimensions for Sex Classification: Insights from a Greek Computed Tomography-Based Study. Diagnostics (Basel, Switzerland), 15(13), 1649. https://doi.org/10.3390/diagnostics15131649
21. Villar, J., Gunier, R. B., Tshivuila-Matala, C. O. O., Rauch, S. A., Nosten, F., Ochieng, R., Restrepo-Méndez, M. C., McGready, R., Barros, F. C., Fernandes, M., Carrara, V. I., Victora, C. G., Munim, S., Craik, R., Barsosio, H. C., Carvalho, M., Berkley, J. A., Cheikh Ismail, L., Norris, S. A., Ohuma, E. O., … Kennedy, S. H. (2021). Fetal cranial growth trajectories are associated with growth and neurodevelopment at 2 years of age: INTERBIO-21st Fetal Study. Nature medicine, 27(4), 647–652. https://doi.org/10.1038/s41591-021-01280-2
22. Vu, G. H., Mazzaferro, D. M., Kalmar, C. L., Zimmerman, C. E., Humphries, L. S., Swanson, J. W., Bartlett, S. P., & Taylor, J. A. (2020). Craniometric and Volumetric Analyses of Cranial Base and Cranial Vault Differences in Patients With Nonsyndromic Single-Suture Sagittal Craniosynostosis. The Journal of craniofacial surgery, 31(4), 1010–1014. https://doi.org/10.1097/SCS.0000000000006492
23. Walczak, A., Krenz-Niedbała, M., & Łukasik, S. (2023). Insight into age-related changes of the human facial skeleton based on medieval European osteological collection. Scientific reports, 13(1), 20564. https://doi.org/10.1038 /s41598-023-47776-4
24. White, H. E., Goswami, A., & Tucker, A. S. (2021). The Intertwined Evolution and Development of Sutures and Cranial Morphology. Frontiers in cell and developmental biology, 9, 653579. https://doi.org/10.3389 /fcell.2021.653579
25. Yang, H., Yuan, S., Yan, Y., Zhou, L., Zheng, C., Li, Y., & Li, J. (2025). Finite Element Analysis of the Effects of Different Shapes of Adult Cranial Sutures on Their Mechanical Behavior. Bioengineering (Basel, Switzerland), 12(3), 318. https://doi.org/10.3390/bioengineering12030318
Downloads
Published
Issue
Section
License
Copyright (c) 2025 American Journal of Psychiatric Rehabilitation

This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License permitting all use, distribution, and reproduction in any medium, provided the work is properly cited.