GC-MS Analysis, Antioxidant and Genotoxic Assessment of Medicinally Important Plant Paeonia emodi Wall Ex. Hook

Authors

  • Atee-ur-Rehman
  • Muhammad Adil
  • Sunila Athshan Mir
  • Shabeena
  • Sarwat Jahan
  • Muhammad Naseer

DOI:

https://doi.org/10.69980/ajpr.v28i1.651

Keywords:

GC-MS, antioxidant, genotoxic, Paeonia emodi

Abstract

Paeonia emodi Wall Ex. Hook., a member of the Paeoniaceae family, is an herbaceous perennial plant. It survives in the winter through underground buds and is known for its large white flower and deeply divided leaves. Traditionally, it has been used to treat various ailments. The current study was carried out to find the bioactive compounds by GC-MS, antioxidant activity through DPPH, genotoxic activity through comet assay, GC-MS Chromatogram represents different compounds detected in the crude extract. Major pharmacological bioactive compounds are 4H-Pyran- 4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl- 4-Methyl, 10E,12Z-Octadecadienoic acid, 1,2-Cyclohexanedicarboxylic acid 1,4-Benzenedicarboxylic acid, bi..., 2-Pentanone, 4-hydroxy-4-methyl-, Eugenol; 9,12-Octadecadienoic acid (Z,Z); 1,4-Benzenedicarboxylic acid, bi...; 1-Piperidinecarboxaldehyde, 2- After 90 minutes at a concentration of 300 (g/ml), the methanolic extract showed the highest antioxidant activity (67.7±1.54), closely followed by the ethanolic extract (72.4±2.06). The methanolic and ethanolic extract show genotoxic activity (114.6±63.03), (169.7±71), and (173±87.38), (205.9±85.62) at 75, and 100 mg/100 ml, respectively at high dose. This study emphasizes that the plant is rich both micro and macro nutrients, has significant nutritional value, and shows notable pharmacological effects. These characteristics make it a promising candidate for developing treatments for various health conditions.

Author Biographies

Atee-ur-Rehman

Department of Chemical and Life Sciences, Qurtuba University of Science and Information Technology, Peshawar, Pakistan

Muhammad Adil

Department of Chemical and Life Sciences, Qurtuba University of Science and Information Technology, Peshawar, Pakistan

Sunila Athshan Mir

Department of Chemical and Life Sciences, Qurtuba University of Science and Information Technology, Peshawar, Pakistan

Shabeena

Department of Chemical and Life Sciences, Qurtuba University of Science and Information Technology, Peshawar, Pakistan

Sarwat Jahan

Department of Chemical and Life Sciences, Qurtuba University of Science and Information Technology, Peshawar, Pakistan

Muhammad Naseer

Department of Chemical and Life Sciences, Qurtuba University of Science and Information Technology, Peshawar, Pakistan

References

1. Ullah, H., Adil, M., & Filimban, F. Z. (2023). GC-MS analysis, Elemental and Nutritional Composition and Biological Investigation of Medicinally Valued Fingerhuthia africana Lehm.

2. Pandey, A.; Tripathi, S.; Pandey, C.A. Concept of Standardization, Extraction and Pre Phytochemical Screening Strategies for Herbal Drug. J. Pharmacogn. Phytochem., 2014, 2, 115–119.

3. Radha; Kumar, M.; Puri, S.; Pundir, A.; Bangar, S.P.; Changan, S.; Choudhary, P.; Parameswari, E.; Alhariri, A.; Samota, M.K.; Damale, R.D.; Singh, S.; Berwal, M.K.; Dhumal, S.; Bhoite, A.G.; Senapathy, M.; Sharma, A.; Bhushan, B.; Mekhemar, M. Evaluation of Nutritional, Phytochemical, and Mineral Composition of Selected Medicinal Plants for Therapeutic Uses from Cold Desert of Western Himalaya. Plants, 2021, 10, 1–16.

4. Patil, A.; Gaonkar, V.P.; Chimagave, S.S.; Hullatti, K. Pharmacognostical and Biological Evaluation ofMayurshikha (Actiniopteries Dichotoma Bedd): An Ayurvedic Medicinal Plant. Int. J. Ayurvedic Med., 2022,13, 338–344

5. Chintamunnee, V.; Mahomoodally, M.F. Herbal Medicine Commonly Used against Non-Communicable Diseases in the Tropical Island of Mauritius. J. Herb. Med., 2012, 2, 113–125.

6. Süntar, I. Importance of Ethnopharmacological Studies in Drug Discovery: Role of Medicinal Plants. Phytochem. Rev., 2020, 19, 1199–1209.

7. Ullah, I.; Ullah, I.; Ali, M.; Durrani, F.; Khan, S.U.; Hussain, D.; Mehmood, S.; Khan, S.U.; Ullah, M.; Hussain, K.; Bahadur, S.; Aneva, I.Y.; Bussmann, R.W. Quantitative Study of Medicinal Plants and Biological Activities of Two Common Species Used by Inhabitants of District Bannu, Pakistan. Acta Ecol. Sin., 2023, 43, 271–287.

8. Petrovska, B.B. Historical Review of Medicinal Plants’ Usage. Pharmacogn. Rev., 2012, 6, 1–5.

9. Dagli, N.; Dagli, R.; Mahmoud, R.; Baroudi, K. Essential Oils, Their Therapeutic Properties, and Implication in Dentistry: A Review. J. Int. Soc. Prev. Community Dent., 2015, 5, 335–340.

10. Mahomoodally, M.F. Traditional Medicines in Africa: An Appraisal of Ten Potent African Medicinal Plants. Evidence-based Complement. Altern. Med., 2013, 2013, 1–14.

11. Nisha, K.; Darshana, M.; Madhu, G.; Bhupendra, M.K. GC-MS Analysis and Anti-Microbial Activity of Psidium Guajava (Leaves) Grown in Malva Region of India. Int. J. Drug Dev. Res., 2011, 3, 237–245.

12. Konappa, N.; Udayashankar, A.C.; Krishnamurthy, S.; Pradeep, C.K.; Chowdappa, S.; Jogaiah, S. GC–MS Analysis of Phytoconstituents from Amomum Nilgiricum and Molecular Docking Interactions of Bioactive Serverogenin Acetate with Target Proteins. Sci. Rep., 2020, 10, 16438.

13. Qasim, M.; Abideen, Z.; Adnan, M.Y.; Gulzar, S.; Gul, B.; Rasheed, M.; Khan, M.A. Antioxidant Properties, Phenolic Composition, Bioactive Compounds and Nutritive Value of Medicinal Halophytes Commonly Used as Herbal Teas. South African J. Bot., 2017, 110, 240–250.

14. Albouchi, F.; Hassen, I.; Casabianca, H.; Hosni, K. Phytochemicals, Antioxidant, Antimicrobial and Phytotoxic Activities of Ailanthus Altissima (Mill.) Swingle Leaves. South African J. Bot., 2013, 87, 164–174.

15. Baba, S.A.; Malik, A.H.; Wani, Z.A.; Mohiuddin, T.; Shah, Z.; Abbas, N.; Ashraf, N. Phytochemical Analysis and Antioxidant Activity of Different Tissue Types of Crocus Sativus and Oxidative Stress Alleviating Potential of Saffron Extract in Plants, Bacteria, and Yeast. South African J. Bot., 2015, 99, 80–87.

16. Martinelli, E.; Granato, D.; Azevedo, L.; Gonçalves, J.E.; Lorenzo, J.M.; Munekata, P.E.S.; Simal-Gandara, J.; Barba, F.J.; Carrillo, C.; Rajoka, M.S.R. Current Perspectives in Cell-Based Approaches towards the Definition of the Antioxidant Activity in Food. Trends Food Sci. Technol., 2021, 116, 232–243.

17. Badr, A.; El-Shazly, H.H.; Mohamed, H.I. Plant Responses to Induced Genotoxicity and Oxidative Stress by Chemicals. In; Springer, 2021; pp. 103–131.

18. Sandoval-Herrera, N.; Paz Castillo, J.; Herrera Montalvo, L.G.; Welch, K.C. Micronucleus Test Reveals Genotoxic Effects in Bats Associated with Agricultural Activity. Environ. Toxicol. Chem., 2021, 40, 202–207.

19. Uddin, M. M. N., M.S.H. Kabir, F. Ahmed and M.S. Alam, M. S. 2018. Assessment of the antioxidant, thrombolytic, analgesic, anti-inflammatory, antidepressant and anxiolytic activities of leaf extracts and fractions of Tetracera sarmentosa (L.) Vahl. J. Bas. Clinic. Physio. Pharma., 29(1): 81-93.

20. Hong, D. Y. (2010). Peonies of the World: Taxonomy and Phytogeography. London: Royal Botanic Gardens Kew.

21. Hong, D. Y. (2021). Peonies of the World: Phylogeny and Evolution. London: Royal Botanic Gardens Kew

22. Hong, D. Y. (2011). Peonies of the World: Polymorphism and Diversity. London: Royal Botanic Gardens Kew.

23. Agbo, M. O., P.F. Uzor, U.N.A. Nneji, C.U.E. Odurukwe, U.B. Ogbatue and E.C. Mbaoji. 2015. Antioxidant, total phenolic and flavonoid content of selected Nigerian medicinal plants. Dhaka Univ. J. Pharma. Sci., 14(1): 35-41.

24. Dhawan, D. and J. Gupta. 2017. Research article comparison of different solvents for phytochemical extraction potential from Datura metel plant leaves. Int. J. Biol. Chem., 11: 17-22.

25. Pamulaparthi, A., V.R. Prathap, M. Banala and R.S. Nanna. 2016. Total phenolic, flavonoid contents and antioxidant assays in leaf extracts of Senna alata (L.) Roxb. J. Pharmaceu. Sci. Res., 8(9): 981.

26. Ayoub, L., F. Hassan, S. Hamid, Z. Abdelhamid and A. Souad. 2019. Phytochemical screening, antioxidant activity and inhibitory potential of Ficus carica and Olea europaea leaves. Bioinform.,15(3): 226-232.

27. Aryal, S., M.K. Baniya, K. Danekhu, P. Kunwar, R. Gurung and N. Koirala. 2019. Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from Western Nepal. Plants., 8(4): 96.

28. Akhtar, M. F., A. Saleem, A. Sharif, B. Akhtar, M.B. Nasim, S. Peerzada, M. Raza, H. Ijaz, S. Ahmed, M. Shabbir, S. Ali, Z. Akbar and S. Ali. 2016. Genotoxic and cytotoxic action potential of Terminalia citrina, a medicinal plant of ethnopharmacological significance. Excli J., 15: 589-598.

29. Al-Faifi, Z. I., Y.S. Masrahi, M.S. Aly, T.A. Al-Turki and T. Dardeer. 2017. Evaluation of cytotoxic and genotoxic effects of Euphorbia triaculeata Forssk. extract. Asian Pac. J. Canc. Prev., 18(3): 771.

30. Andrade, A. F., J. M. Alves, M.B. Corrêa, W.R. Cunha, R.C.S. Veneziani and D.C. Tavares. 2016. In vitro cytotoxicity, genotoxicity and antigenotoxicity assessment of Solanum lycocarpum hydroalcoholic extract. Pharma. Biol., 54(11): 2786-2790.

31. Mattana, C. M., M.A. Cangiano, L.E. Alcaráz, A. Sosa, F. Escobar, C. Sabini and A.L. Laciar. 2014. Evaluation of cytotoxicity and genotoxicity of Acacia aroma leaf extracts. Scient. Wrld. J., 18(6): 1-6.

32. Sousa, W. C., A. Ts Paz, J.D. Rocha, E.C. Conceição, L.M. Almeida, L.C. Chen, L. L. Borges and E.F. Bailao. 2018. In vivo assessment of cyto/genotoxic, antigenotoxic and antifungal potential of Costus spiralis (Jacq.) Roscoe leaves and stems. Ana. Acad. Brasil. Ciênc., 90(2): 1565-1577.

33. Chaabane, F., J. Boubaker, A. Loussaif, A. Neffati, S. Kilani-Jaziri, K. Ghedira and L. Chekir-Ghedira. 2012. Antioxidant, genotoxic and antigenotoxic activities of Daphne gnidium leaf extracts. BMC Compl. Altern. Med., 12(1): 153.

34. Bhagyanathan, N. K. and J..E. Thoppil. 2016. Genotoxic potential of Cynanchum sarcomedium Meve & Liede coupled with its modulatory action on oxidative-stress mediated genotoxicity by hydrogen peroxide. Turk. J. Biol., 40: 120-129

35. Ganaie, H.A.; Ali, M.N. GC-MS Analysis and Evaluation of Mutagenic and Antimutagenic Activity of Ethyl Acetate Extract of Ajuga Bracteosa Wall Ex. Benth: An Endemic Medicinal Plant of Kashmir Himalaya, India. J. Clin. Toxicol., 2016, 06, 1–9.

36. Sumathi, B.M.; Uthayakumari, F. GC MS Analysis of Leaves of Jatropha Maheswarii Subram & Nayar. Sci. Res. Report., 2014, 4, 24–30.

37. Jeeva, S.; Johnson, M.; Aparna, J.S.; Irudayaraj, V. Preliminary Phytochemical and Anti-Bacterial Studies on Flowers of Selected Medicinal Plants. Int. J. Med. Arom. Plants, 2011, 1, 107–114.

38. Mohammed, G.J.; Al-Jassani, M.J.; Hameed, I.H. Anti-Bacterial, Antifungal Activity and Chemical Analysis of Punica Grantanum (Pomegranate Peel) Using GC-MS and FTIR Spectroscopy. Int. J. Pharmacogn. Phytochem. Res., 2016, 8, 480–494.

39. Hassan, S.B.; Gali-Muhtasib, H.; Göransson, H.; Larsson, R. Alpha Terpineol: A Potential Anticancer Agent Which Acts through Suppressing NF-ΚB Signalling. Anticancer Res., 2010, 30, 1911–1919.

40. Saeed, H.M.; Ferdosi, M.F.H.; Khan, I.H.; Javaid, A. ANTIBACTERIAL ACTIVITY AND GC-MS ANALYSIS OF WHITE FLOWERS EXTRACT OF NERIUM OLEANDER L . Int. J. Biol. Biotechnol., 2023, 25, 163–168.

41. 43. Kamal, M.; Shakya, A.K.; Jawaid, T. Benzofurans: A New Profile of Biological Activities 15- Hydroxyprostaglandin Dehydrogenase (15-PGDH) Inhibitors View Project HPLC MV View Project. Int. J. Med. Pharm. Sci., 2011, 1, 1–15.

42. Javaid, A.; Khan, I.H.; Ferdosi, M.F.H. ANTIMICROBIAL AND OTHER BIOACTIVE CONSTITUENTS OF Cannabis Sativus ROOTS FROM PAKISTAN. J. Weed Sci. Res., 2021, 27, 359–368.

43. Rautela, I.; Joshi, P.; Thapliyal, P.; Pant, M.; Dheer, P.; Bisht, S.; Sinha, V.B.; Sundriyal, S.; Sharma, M.D.Comparative GC-MS Analysis of Euphorbia Hirta and Euphorbia Milli for Therapeutic Potential Utilities. Plant Arch., 2020, 20, 3515–3522.

44. Mishra, A.K.; Tiwari, K.N.; Saini, R.; Chaurasia, J.K.; Mishra, S.K. Assessment of Antioxidant Potential in Seed Extracts of Nyctanthes Arbor-Tristis L. and Phytochemical Profiling by Gas Chromatography-Mass Spectrometry System. Brazilian J. Pharm. Sci., 2022, 58, 1–16.

45. Riaz, M.; Rasool, N.; Bukhari, I.H.; Shahid, M.; Zubair, M.; Rizwan, K.; Rashid, U. In Vitro Antimicrobial, Antioxidant, Cytotoxicity and GC-MS Analysis of Mazus Goodenifolius. Molecules, 2012, 17, 14275–14287.

46. Njoya, H..; Onyeneke, C.E.; Okwuonu, C..; Al., E. Phytochemical , Proximate and Elemental Analysis of the African Mistletoe ( Tapinanthus Preussii ) Crude Aqueous and Ethanolic Leaf Extracts. J. Med. Plants Stud., 2018, 6, 162–170.

47. Oyeyinka, B.O.; Afolayan, A.J. Comparative Evaluation of the Nutritive, Mineral, and Antinutritive Composition of Musa Sinensis l. (Banana) and Musa Paradisiaca l. (Plantain) Fruit Compartments. Plants, 2019, 8, 2–14.

48. Nwozo, O.S.; Effiong, E.M.; Aja, P.M.; Awuchi, C.G. Antioxidant, Phytochemical, and Therapeutic Properties of Medicinal Plants: A Review. Int. J. Food Prop., 2023, 26, 359–388.

49. Jahanban-Esfahlan, A.; Ostadrahimi, A.; Tabibiazar, M.; Amarowicz, R. A Comparative Review on the Extraction, Antioxidant Content and Antioxidant Potential of Different Parts of Walnut (Juglans Regia l.) Fruit and Tree. Molecules, 2019, 24.

50. Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food Sources and Bioavailability. Am. J. Clin. Nutr., 2004, 79, 727–747.

51. Baiano, A.; Del Nobile, M.A. Antioxidant Compounds from Vegetable Matrices: Biosynthesis, Occurrence, and Extraction Systems. Crit. Rev. Food Sci. Nutr., 2016, 56, 2053–2068.

52. Akhtar, M.F.; Saleem, A.; Sharif, A.; Akhtar, B.; Nasim, M. Bin; Peerzada, S.; Raza, M.; Ijaz, H.; Ahmed, S.; Shabbir, M.; Ali, S.; Akbar, Z.; Ul Hassan, S.S. Genotoxic and Cytotoxic Action Potential of Terminalia Citrina, a Medicinal Plant of Ethnopharmacological Significance. EXCLI J., 2016, 15, 589–598.

53. Akolade, O.R.; Chinwe, A.S.; Olalekan, B.T.; Halima, A.T.; Fatima, A.A.; Emuejevoke, T.T.; Herbert, C.A.B. Haematological and Genotoxicity Evaluations of Phytochemical Compounds from N-Hexane Extract of Uvaria Chamae Stem on Selected Organs in Mice . Ann. Sci. Technol., 2018, 3, 28–34.

54. Sabahi, Z.; Soltani, F.; Moein, M. Insight into DNA Protection Ability of Medicinal Herbs and Potential Mechanisms in Hydrogen Peroxide Damages Model. Asian Pac. J. Trop. Biomed., 2018, 8, 120–129.

55. Mattana, C.M.; Cangiano, M.A.; Alcaráz, L.E.; Sosa, A.; Escobar, F.; Sabini, C.; Sabini, L.; Laciar, A.L. Evaluation of Cytotoxicity and Genotoxicity of Acacia Aroma Leaf Extracts. Sci. World J., 2014, 18, 1–6.

56. Andrade, A.F.; Alves, J.M.; Corrêa, M.B.; Cunha, W.R.; Veneziani, R.C.S.; Tavares, D.C. In Vitro Cytotoxicity, Genotoxicity and Antigenotoxicity Assessment of Solanum Lycocarpum Hydroalcoholic Extract. Pharm. Biol., 2016, 54, 2786–2790.

57. Sher, A. A., Iqbal, A., Adil, M., Ullah, S., Bawazeer, S., Binmahri, M. K., & Irfan, M. (2022). GC-MS analysis of organic fractions of Chrozophora tinctoria (L.) A. Juss. And their pro kinetic propensity in animal models. Brazilian Journal of Biology, 84,

58. Adedapo, A. A., F.O. Jimoh, A.J. Afolayan and P.J. Masika. 2009. Antioxidant properties of the methanol extracts of the leaves and stems of Celtis africana. Rec. Nat. Prod., 3(1): 23-31

59. Singh, N.P.; McCoy, M.T.; Tice, R.R.; Schneider, E.L. A Simple Technique for Quantitation of Low Levels of DNA Damage in Individual Cells. Exp. Cell Res., 1988, 175, 184–191.

Downloads

Published

2025-01-29