Radiomics in Precision Psychiatry: Current Trends and Future Applications

Authors

  • Dr Krishna Chidrawar
  • Dr Samir Dere
  • Dr Siddharth Sharma
  • Dr Parth Patel

DOI:

https://doi.org/10.69980/ajpr.v24i1-2.695

Keywords:

Radiomics, Precision psychiatry, Neuroimaging biomarkers, Structural and functional MRI, Predictive modeling, Translational radiology

Abstract

Radiomics has rapidly advanced as a transformative approach in medical imaging, converting routine scans into high-dimensional quantitative data. While well established in oncology, its role in psychiatry is emerging with promising translational potential. Precision psychiatry aimed at moving beyond symptom-based classification toward biomarker-driven diagnosis and treatment provides an ideal framework for radiomics. This review synthesizes current evidence on radiomics across major psychiatric disorders, including depression, schizophrenia, bipolar disorder, and autism spectrum disorder, as well as its relevance to neurodegenerative diseases with psychiatric features. It outlines the workflow of psychiatric radiomics, modality-specific contributions from structural MRI, functional MRI, diffusion imaging, and PET, and the promise of hybrid approaches such as PET/MR. Clinical studies demonstrate radiomics’ potential for predicting treatment response, identifying subtypes, and supporting personalized interventions. However, challenges remain, including technical variability, reproducibility, ethical concerns, and limited multicentric validation. Solutions include harmonization methods, reproducibility standards, and transparent reporting frameworks. Looking ahead, integration with multi-omics, adoption of explainable AI, and incorporation into precision psychiatry ecosystems linking imaging with digital phenotyping will be essential. Radiologists are pivotal in ensuring standardization, clinical translation, and the establishment of radiology as a cornerstone of precision psychiatry.

Author Biographies

Dr Krishna Chidrawar

MBBS MD Radiodiagnosis (Senior Resident. Radiology Department -King Edward Memorial Hospital& Seth Gordhandas Sunderdas Medical College - Mumbai, India)

Dr Samir Dere

MBBS MD Radiodiagnosis (Senior Resident Radiology Department- Dr. Balasaheb Vikhe Patil Rural Medical College, Loni, India.)

Dr Siddharth Sharma

MBBS MD Radiodiagnosis (Senior Resident Radiology Department All India Institute Of Medical Sciences, (AIIMS) Raipur)

Dr Parth Patel

DMRD DNB Radiodiagnosis (Senior Resident Radiology Department Max Super Speciality Hospital, Saket)

References

1. Aerts, H. J., Velazquez, E. R., Leijenaar, R. T., Parmar, C., Grossmann, P., Carvalho, S., ... and Lambin, P. (2014). Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nature communications, 5(1), 4006.

2. Beer, J. C., Tustison, N. J., Cook, P. A., Davatzikos, C., Sheline, Y. I., Shinohara, R. T., ... and Alzheimer’s Disease Neuroimaging Initiative. (2020). Longitudinal ComBat: A method for harmonizing longitudinal multi-scanner imaging data. Neuroimage, 220, 117129.

3. Beig, N., Bera, K., and Tiwari, P. (2020). Introduction to radiomics and radiogenomics in neuro-oncology: implications and challenges. Neuro-Oncology Advances, 2(Supplement_4), iv3-iv14.

4. Bzdok, D., & Meyer-Lindenberg, A. (2018). Machine learning for precision psychiatry: opportunities and challenges. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 3(3), 223-230.

5. Casey, B. J., Cannonier, T., Conley, M. I., Cohen, A. O., Barch, D. M., Heitzeg, M. M., ... & Dale, A. M. (2018). The adolescent brain cognitive development (ABCD) study: imaging acquisition across 21 sites. Developmental cognitive neuroscience, 32, 43-54.

6. Ching, T., Himmelstein, D. S., Beaulieu-Jones, B. K., Kalinin, A. A., Do, B. T., Way, G. P., ... and Greene, C. S. (2018). Opportunities and obstacles for deep learning in biology and medicine. Journal of the royal society interface, 15(141), 20170387.

7. Eickhoff, S. B., & Grefkes, C. (2011). Approaches for the integrated analysis of structure, function and connectivity of the human brain. Clinical EEG and neuroscience, 42(2), 107-121.

8. Fernandes, B. S., Williams, L. M., Steiner, J., Leboyer, M., Carvalho, A. F., and Berk, M. (2017). The new field of ‘precision psychiatry’. BMC medicine, 15(1), 80.

9. Fortin, J. P., Cullen, N., Sheline, Y. I., Taylor, W. D., Aselcioglu, I., Cook, P. A., ... and Shinohara, R. T. (2018). Harmonization of cortical thickness measurements across scanners and sites. Neuroimage, 167, 104-120.

10. Friston, K. J. (2017). Precision psychiatry. Biological psychiatry: cognitive neuroscience and neuroimaging, 2(8), 640-643.

11. Giger, M. L. (2018). Machine learning in medical imaging. Journal of the American College of Radiology, 15(3), 512-520.

12. Gillies, R. J., Kinahan, P. E., and Hricak, H. (2016). Radiomics: images are more than pictures, they are data. Radiology, 278(2), 563-577.

13. Gong, Q., and He, Y. (2015). Depression, neuroimaging and connectomics: a selective overview. Biological psychiatry, 77(3), 223-235.

14. Gonzalez-Mantilla, A. J., Moreno-De-Luca, A., Ledbetter, D. H., and Martin, C. L. (2016). A cross-disorder method to identify novel candidate genes for developmental brain disorders. JAMA psychiatry, 73(3), 275-283.

15. Goodkind, M., Eickhoff, S. B., Oathes, D. J., Jiang, Y., Chang, A., Jones-Hagata, L. B., ... and Etkin, A. (2015). Identification of a common neurobiological substrate for mental illness. JAMA psychiatry, 72(4), 305-315.

16. Guest, P. C. (2017). Biomarkers and mental illness. Copernicus, Cham. doi: https://doi-org. proxy. lib. chalmers. se/10.1007/978-3-319-46088-8.

17. Huang, X., Gong, Q., Sweeney, J. A., and Biswal, B. B. (2019). Progress in psychoradiology, the clinical application of psychiatric neuroimaging. The British Journal of Radiology, 92(1101), 20181000.

18. Huys, Q. J., Maia, T. V., and Paulus, M. P. (2016). Computational psychiatry: from mechanistic insights to the development of new treatments. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 1(5), 382-385.

19. Insel, T. R. (2014). The NIMH research domain criteria (RDoC) project: precision medicine for psychiatry. American journal of psychiatry, 171(4), 395-397.

20. Koutsouleris, N., Meisenzahl, E. M., Davatzikos, C., Bottlender, R., Frodl, T., Scheuerecker, J., ... & Gaser, C. (2009). Use of neuroanatomical pattern classification to identify subjects in at-risk mental states of psychosis and predict disease transition. Archives of general psychiatry, 66(7), 700-712.

21. Kumar, V., Gu, Y., Basu, S., Berglund, A., Eschrich, S. A., Schabath, M. B., ... and Gillies, R. J. (2012). Radiomics: the process and the challenges. Magnetic resonance imaging, 30(9), 1234-1248.

22. Lambin, P., Leijenaar, R. T., Deist, T. M., Peerlings, J., De Jong, E. E., Van Timmeren, J., ... and Walsh, S. (2017). Radiomics: the bridge between medical imaging and personalized medicine. Nature reviews Clinical oncology, 14(12), 749-762.

23. Liu, X., Rivera, S. C., Moher, D., Calvert, M. J., Denniston, A. K., Ashrafian, H., ... and Yau, C. (2020). Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI extension. The Lancet Digital Health, 2(10), e537-e548.

24. Liu, Z., Wang, S., Dong, D., Wei, J., Fang, C., Zhou, X., ... and Tian, J. (2019). The applications of radiomics in precision diagnosis and treatment of oncology: opportunities and challenges. Theranostics, 9(5), 1303.

25. Miotto, R., Wang, F., Wang, S., Jiang, X., and Dudley, J. T. (2018). Deep learning for healthcare: review, opportunities and challenges. Briefings in bioinformatics, 19(6), 1236-1246.

26. Moser, D. A., Doucet, G. E., Lee, W. H., Rasgon, A., Krinsky, H., Leibu, E., ... and Frangou, S. (2018). Multivariate associations among behavioral, clinical, and multimodal imaging phenotypes in patients with psychosis. JAMA psychiatry, 75(4), 386-395.

27. Mwangi, B., Tian, T. S., & Soares, J. C. (2014). A review of feature reduction techniques in neuroimaging. Neuroinformatics, 12(2), 229-244.

28. Nielsen, A. N., Greene, D. J., Gratton, C., Dosenbach, N. U., Petersen, S. E., & Schlaggar, B. L. (2019). Evaluating the prediction of brain maturity from functional connectivity after motion artifact denoising. Cerebral Cortex, 29(6), 2455-2469.

29. Parkes, L., Satterthwaite, T. D., and Bassett, D. S. (2020). Towards precise resting-state fMRI biomarkers in psychiatry: synthesizing developments in transdiagnostic research, dimensional models of psychopathology, and normative neurodevelopment. Current Opinion in Neurobiology, 65, 120-128.

30. Quinlan, E. B., Banaschewski, T., Barker, G. J., Bokde, A. L., Bromberg, U., Buechel, C., ... and IMAGEN Consortium. (2020). Identifying biological markers for improved precision medicine in psychiatry. Molecular psychiatry, 25(2), 243-253.

31. Sämann, P. G., Höhn, D., Chechko, N., Kloiber, S., Lucae, S., Ising, M., ... and Czisch, M. (2013). Prediction of antidepressant treatment response from gray matter volume across diagnostic categories. European Neuropsychopharmacology, 23(11), 1503-1515.

32. Savitz, J. B., and Drevets, W. C. (2013). Neuroreceptor imaging in depression. Neurobiology of disease, 52, 49-65.

33. Schmaal, L., Hibar, D. P., Sämann, P. G., Hall, G. B., Baune, B. T., Jahanshad, N., ... and Veltman, D. J. (2017). Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA Major Depressive Disorder Working Group. Molecular psychiatry, 22(6), 900-909.

34. Schmaal, L., Pozzi, E., C. Ho, T., Van Velzen, L. S., Veer, I. M., Opel, N., ... and Veltman, D. J. (2020). ENIGMA MDD: seven years of global neuroimaging studies of major depression through worldwide data sharing. Translational psychiatry, 10(1), 172.

35. Smith, S. M., & Nichols, T. E. (2018). Statistical challenges in “big data” human neuroimaging. Neuron, 97(2), 263-268.

36. Sporns, O. (2014). Contributions and challenges for network models in cognitive neuroscience. Nature neuroscience, 17(5), 652-660.

37. Stephan, K. E., and Mathys, C. (2014). Computational approaches to psychiatry. Current opinion in neurobiology, 25, 85-92.

38. Van Griethuysen, J. J., Fedorov, A., Parmar, C., Hosny, A., Aucoin, N., Narayan, V., ... and Aerts, H. J. (2017). Computational radiomics system to decode the radiographic phenotype. Cancer research, 77(21), e104-e107.

39. Van Waarde, J. A., Scholte, H. S., Van Oudheusden, L. J. B., Verwey, B., Denys, D., and Van Wingen, G. A. (2015). A functional MRI marker may predict the outcome of electroconvulsive therapy in severe and treatment-resistant depression. Molecular psychiatry, 20(5), 609-614.

40. Varoquaux, G., & Thirion, B. (2014). How machine learning is shaping cognitive neuroimaging. GigaScience, 3(1), 2047-217X.

41. Venkatasubramanian, G., and Keshavan, M. S. (2016). Biomarkers in psychiatry-a critique. Annals of neurosciences, 23(1), 3-5.

42. Wang, Y., Sun, K., Liu, Z., Chen, G., Jia, Y., Zhong, S., ... and Tian, J. (2020). Classification of unmedicated bipolar disorder using whole-brain functional activity and connectivity: a radiomics analysis. Cerebral Cortex, 30(3), 1117-1128.

43. Woo, C. W., Chang, L. J., Lindquist, M. A., & Wager, T. D. (2017). Building better biomarkers: brain models in translational neuroimaging. Nature neuroscience, 20(3), 365-377.

44. Yip, S. S., and Aerts, H. J. (2016). Applications and limitations of radiomics. Physics in Medicine and Biology, 61(13), R150.

45. Zwanenburg, A., Vallières, M., Abdalah, M. A., Aerts, H. J., Andrearczyk, V., Apte, A., ... and Löck, S. (2020). The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology, 295(2), 328-338.

Downloads

Published

2021-12-17