Problematic Smartphone Use And Its Psychosocial Correlates: A G-Deeg–Based Paradigm Proposal

Authors

  • Dr. İsmail Akgül

DOI:

https://doi.org/10.69980/ajpr.v28i5.705

Keywords:

Adolescents; Digital therapeutics; Emotion regulation; Ecological momentary assessment (EMA); Fear of missing out (FoMO); Notification architecture; Problematic smartphone use; Smartphone addiction; Smartphone; Sleep disturbance.

Abstract

Background: The deep embedding of smartphones into everyday life has intensified debates about their links with psychological well-being and social functioning. Much of the literature reports small, context-sensitive associations between technology use and mental health indices; the magnitude and direction vary by use characteristics (e.g., passive social comparison, notification intensity), timing (especially late-night use), and individual susceptibilities (e.g., FoMO, impulsivity) [1, 2, 3, 4, 5, 6, 7, 8].

Objective: We conceptualize Problematic Smartphone Use (PSU) not as a standalone diagnosis but as a risk syndrome at the intersection of loss of control, tolerance/withdrawal-like patterns, and salient functional impairment. We integrate evidence within a multilayered framework (developmental, digital-design, emotional/psychological, social/environmental, biological) [9, 10, 11].

Methods: We narratively synthesize longitudinal/panel/EMA studies, systematic reviews and meta-analyses, and selected neuroimaging evidence published between 2013 and 2024 [12, 1, 13, 14, 15, 16, 17].

Findings (synthesis): (i) Average associations are small; however, context-sensitive large effects can emerge via sleep disruption, high-intensity notification architectures, and FoMO/emotion-regulation difficulties [12, 18, 19]. (ii) Neuroimaging studies note striatal–prefrontal differences in at-risk subgroups, with limited causal inference [20, 14]. (iii) Digital therapeutics yield small-to-moderate benefits for depression/anxiety; human support and measurement transparency appear to enhance effects [17, 21, 22].

Conclusions: Moving beyond “addicted everywhere for everyone,” PSU should be approached through functional impairment and context-based clinical decisions. At school/work, phone-free windows and notification diets are advisable; in clinics, stepped-care and preferably human-supported digital interventions are recommended. Future work should prioritize causal mapping through self-report–log–EMA triads, preregistered RCTs, and longitudinal neuroimaging [1, 13, 4].

Author Biography

Dr. İsmail Akgül

Social Service Expert, Medical Oncology, Gazi University Hospital, Ankara, Turkey. 

References

[1] Orben A, Przybylski AK. The association between adolescent well-being and digital technology use. Nat Hum Behav. 2019;3(2):173-182. doi:10.1038/s41562-018-0506-1

[2] Przybylski AK, Weinstein N. A large-scale test of the Goldilocks hypothesis: Quantifying the relations between digital-screen use and the mental well-being of adolescents. Psychol Sci. 2017;28(2):204-215. doi:10.1177/0956797616678438

[3] Jensen MM, George MJ, Russell MA, Odgers CL. Young adolescents’ digital technology use and mental health symptoms: Little evidence of longitudinal or daily linkages. Clin Psychol Sci. 2019;7(6):1416-1433. doi:10.1177/2167702619859336

[4] Odgers CL, Jensen MR. Annual Research Review: Adolescent mental health in the digital age: facts, fears, and future directions. J Child Psychol Psychiatry. 2020;61(3):336-348. doi:10.1111/jcpp.13190

[5] Kardefelt-Winther D, Rees G, Livingstone S. Contextualising the link between adolescents' use of digital technology and their mental health: a multi-country study of time spent online and life satisfaction. J Child Psychol Psychiatry. 2020;61(8):875-889. doi:10.1111/jcpp.13280

[6] Dienlin T, Johannes N. The impact of digital technology use on adolescent well-being. Dialogues Clin Neurosci. 2020;22(2):135-142. doi:10.31887/DCNS.2020.22.2/tdienlin

[7] Carter B, Rees P, Hale L, Bhattacharjee D, Paradkar MS. Association between portable screen-based media device access or use and sleep outcomes: a systematic review and meta-analysis. JAMA Pediatr. 2016;170(12):1202-1208. doi:10.1001/jamapediatrics.2016.2341

[8] Elhai JD, Yang H, McKay D, Asmundson GJG. COVID-19 anxiety symptoms associated with problematic smartphone use severity in Chinese adults. J Affect Disord. 2020;274:576-582. doi:10.1016/j.jad.2020.05.080

[9] Horvath J, Mundinger C, Schmitgen MM, Wolf ND, Sambataro F, Hirjak D, et al. Structural and functional correlates of smartphone addiction. Addict Behav. 2020;105:106334. doi:10.1016/j.addbeh.2020.106334

[10] He Q, Turel O, Bechara A. Brain anatomy alterations associated with Social Networking Site (SNS) addiction. Sci Rep. 2017;7:45064. doi:10.1038/srep45064

[11] Linardon J, Cuijpers P, Carlbring P, Messer M, Fuller-Tyszkiewicz M. The efficacy of app-supported smartphone interventions for mental health problems: a meta-analysis of randomized controlled trials. World Psychiatry. 2019;18(3):325-336. doi:10.1002/wps.20673

[12] Carter B, Rees P, Hale L, Bhattacharjee D, Paradkar MS. Association between portable screen-based media device access or use and sleep outcomes: a systematic review and meta-analysis. JAMA Pediatr. 2016;170(12):1202-1208. doi:10.1001/jamapediatrics.2016.2341

[13] Panova T, Lleras A. Is smartphone addiction really an addiction? J Behav Addict. 2018;7(2):252-259. doi:10.1556/2006.7.2018.49

[14] Elhai JD, Yang H, McKay D, Asmundson GJG. COVID-19 anxiety symptoms associated with problematic smartphone use severity in Chinese adults. J Affect Disord. 2020;274:576-582. doi:10.1016/j.jad.2020.05.080

[15] Billieux J, Maurage P, Lopez-Fernandez O, Kuss DJ, Griffiths MD. Can disordered mobile phone use be considered a behavioral addiction? An update on current evidence and a comprehensive model for future research. Curr Addict Rep. 2015;2(2):156-162. doi:10.1007/s40429-015-0054-y

[16] Firth J, Torous J, Nicholas J, Carney R, Pratap A, Rosenbaum S, et al. The efficacy of smartphone-based mental health interventions for depressive symptoms: a meta-analysis of randomized controlled trials. World Psychiatry. 2017;16(3):287-298. doi:10.1002/wps.20472

[17] Kwon M, Kim DJ, Cho H, Yang S. The Smartphone Addiction Scale: Development and validation of a short version for adolescents. PLoS One. 2013;8(12):e83558. doi:10.1371/journal.pone.0083558

[18] Demirci K, Akgönül M, Akpinar A. Relationship of smartphone use severity with sleep quality, depression, and anxiety in university students. J Behav Addict. 2015;4(2):85-92. doi:10.1556/2006.4.2015.010

[19] Twenge JM, Martin GN, Spitzberg BH. Trends in U.S. adolescents' media use, 1976–2016: the rise of digital media, the decline of TV, and the (near) demise of print. Psychol Pop Media Cult. 2019;8(4):329-345. doi:10.1037/ppm0000203

[20] Twenge JM, Martin GN, Campbell WK. Decreases in psychological well-being among American adolescents after 2012 and links to screen time during the rise of smartphone technology. Emotion. 2018;18(6):765-780. doi:10.1037/emo0000403

[21] Twenge JM, Joiner TE, Rogers ML, Martin GN. Increases in depressive symptoms, suicide-related outcomes, and suicide rates among U.S. adolescents after 2010 and links to increased new media screen time. Clin Psychol Sci. 2018;6(1):3-17. doi:10.1177/2167702617723376

[22] Twenge JM, Campbell WK. Associations between screen time and lower psychological well-being among children and adolescents: Evidence from a population-based study. Prev Med Rep. 2018;12:271-283. doi:10.1016/j.pmedr.2018.10.003

[23] Demirci K, Akgönül M, Akpinar A. Relationship of smartphone use severity with sleep quality, depression, and anxiety in university students. J Behav Addict. 2015;4(2):85-92. doi:10.1556/2006.4.2015.010

[24] Parry DA, Davidson BI, Sewall CJR, Fisher JT, Mieczkowski H, Quintana DS. A systematic review and meta-analysis of discrepancies between logged and self-reported digital media use. Nat Hum Behav. 2021;5(11):1535-1547. doi:10.1038/s41562-021-01117-5

[25] Ellis DA, Davidson BI, Shaw H, Geyer K. Do smartphone usage scales predict behavior? Int J Hum Comput Stud. 2019;130:86-92. doi:10.1016/j.ijhcs.2019.05.004

[26] Orben A, Przybylski AK. The association between adolescent well-being and digital technology use. Nat Hum Behav. 2019;3(2):173-182. doi:10.1038/s41562-018-0506-1

[27] Belsky J, Pluess M. Beyond diathesis stress to differential susceptibility to environmental influences. Psychol Bull. 2009;135(6):885-908. doi:10.1037/a0017376

[28] Belsky J, Pluess M. Beyond diathesis–stress to differential susceptibility to environmental influences. Psychol Bull. 2009;135(6):885-908. doi:10.1037/a0017376

[29] Firth J, Torous J, Nicholas J, Carney R, Pratap A, Rosenbaum S, Sarris J. The efficacy of smartphone-based mental health interventions: a meta-analysis of randomized controlled trials. World Psychiatry. 2017;16(3):287-298. doi:10.1002/wps.20472

[30] Bernstein EE, Dodd Z, Maliken AC, Pantic I, Margolies S, Forand NR, Craske MG, Pizzagalli DA. Human support in app-based cognitive behavioral therapies for emotional disorders: scoping review. J Med Internet Res. 2022;24(4):e33307. doi:10.2196/33307

[31] Hamaker EL, Kuiper RM, Grasman RPPP. A critique of the cross-lagged panel model. Psychol Methods. 2015;20(1):102-116. doi:10.1037/a0038889

Downloads

Published

2025-10-27