A QbD-Guided RP-HPLC Method for Estimation of Repotrectinib: Design, Optimization, and Validation
DOI:
https://doi.org/10.69980/ajpr.v28i3.712Keywords:
Repotrectinib, Quality by Design (QbD), RP-HPLC, Method Development, Validation, Non-Small Cell Lung Cancer (NSCLC), Analytical Method, Forced Degradation, Tyrosine Kinase Inhibitor (TKI)Abstract
Background: Repotrectinib (C₁₈H₁₈FN₅O₂) represents an advanced macrocyclic inhibitor targeting tyrosine kinases, specifically approved for managing ROS1-driven non-small cell lung cancer (NSCLC). The molecule's intricate design and scarcity of established quantification techniques highlight the demand for a dependable, verified analytical procedure. Objective: The goal was to create and confirm an uncomplicated, durable, and economical reverse-phase high-performance liquid chromatography (RP-HPLC) protocol for assessing repotrectinib levels, guided by a Quality by Design (QbD) strategy in line with ICH standards.Methods: Optimization involved a QbD methodology focusing on key factors like mobile phase makeup and acidity level, analyzed via a central composite experimental layout to examine primary, combined, and squared influences. The refined setup incorporated a Phenomenex Kinetex XB-C18 stationary phase (150 mm length × 4.6 mm diameter, 5 µm particles), eluent of 0.1% trifluoroacetic acid mixed with acetonitrile (60:40 volume ratio), elution speed of 0.9 mL per minute, UV detection at 280 nm wavelength, and sample introduction of 10 µL. Assessments covered selectivity, linear range (40–60 µg/mL), recovery rates, repeatability, detection threshold (LOD), quantification threshold (LOQ), durability, and degradation under forced conditions.Results: Strong linear correlation was observed (R² exceeding 0.999), with recovery values between 99.94% and 100.16%. Repeatability tests indicated relative standard deviation (%RSD) under 2%. Detection limit stood at 2.00 µg/mL, and quantification limit at 6.06 µg/mL. The protocol proved stable against slight purposeful adjustments and clearly resolved repotrectinib from breakdown fragments in stress tests. Conclusion: This QbD-based RP-HPLC protocol offers simplicity, reliability, precision, and durability, ideal for standard evaluations of repotrectinib in raw materials and formulated products.
References
(1) Barbato, M. I.; Bradford, D.; Ren, Y.; Aungst, S. L.; Miller, C. P.; Pan, L.; Zirkelbach, J. F.; Li, Y.; Bi, Y.; Fan, J.; Grimstein, M.; Dorff, S. E.; Amatya, A. K.; Mishra-Kalyani, P. S.; Scepura, B.; Schotland, P.; Udoka, O.; Ojofeitimi, I.; Leighton, J. K.; Rahman, N. A.; Pazdur, R.; Singh, H.; Kluetz, P. G.; Drezner, N. FDA Approval Summary: Repotrectinib for Locally Advanced or Metastatic ROS1-Positive Non–Small Cell Lung Cancer. Clin. Cancer Res. 2024, 30 (16), 3364–3370. https://doi.org/10.1158/1078-0432.ccr-24-0949.
(2) Desilets, A.; Repetto, M.; Drilon, A. Repotrectinib: Redefining the Therapeutic Landscape for Patients with ROS1 Fusion‐driven Non‐small Cell Lung Cancer. Clin. Transl. Med. 2024, 14 (10). https://doi.org/10.1002/ctm2.70017.
(3) Dhillon, S. Repotrectinib: First Approval. Drugs 2024, 84 (2), 239–246. https://doi.org/10.1007/s40265-023-01990-6.
(4) Yun, M. R.; Kim, D. H.; Kim, S.-Y.; Joo, H.-S.; Lee, Y. W.; Choi, H. M.; Park, C. W.; Heo, S. G.; Kang, H. N.; Lee, S. S.; Schoenfeld, A. J.; Drilon, A.; Kang, S.-G.; Shim, H. S.; Hong, M. H.; Cui, J. J.; Kim, H. R.; Cho, B. C. Repotrectinib Exhibits Potent Antitumor Activity in Treatment-Naïve and Solvent-Front–Mutant ROS1-Rearranged Non–Small Cell Lung Cancer. Clin. Cancer Res. 2020, 26 (13), 3287–3295. https://doi.org/10.1158/1078-0432.ccr-19-2777.
(5) Almutairi, M. B. F.; Alrouji, M.; Almuhanna, Y.; Asad, M.; Joseph, B. In-Vitro and In-Vivo Antibacterial Effects of Frankincense Oil and Its Interaction with Some Antibiotics against Multidrug-Resistant Pathogens. Antibiotics 2022, 11 (11), 1591. https://doi.org/10.3390/antibiotics11111591.
(6) Barbato, M. I.; Bradford, D.; Ren, Y.; Aungst, S. L.; Miller, C. P.; Pan, L.; Zirkelbach, J. F.; Li, Y.; Bi, Y.; Fan, J.; Grimstein, M.; Dorff, S. E.; Amatya, A. K.; Mishra-Kalyani, P. S.; Scepura, B.; Schotland, P.; Udoka, O.; Ojofeitimi, I.; Leighton, J. K.; Rahman, N. A.; Pazdur, R.; Singh, H.; Kluetz, P. G.; Drezner, N. FDA Approval Summary: Repotrectinib for Locally Advanced or Metastatic ROS1-Positive Non–Small Cell Lung Cancer. Clin. Cancer Res. 2024, 30 (16), 3364–3370. https://doi.org/10.1158/1078-0432.ccr-24-0949.
(7) Yun, M. R.; Kim, D. H.; Kim, S.-Y.; Joo, H.-S.; Lee, Y. W.; Choi, H. M.; Park, C. W.; Heo, S. G.; Kang, H. N.; Lee, S. S.; Schoenfeld, A. J.; Drilon, A.; Kang, S.-G.; Shim, H. S.; Hong, M. H.; Cui, J. J.; Kim, H. R.; Cho, B. C. Repotrectinib Exhibits Potent Antitumor Activity in Treatment-Naïve and Solvent-Front–Mutant ROS1-Rearranged Non–Small Cell Lung Cancer. Clin. Cancer Res. 2020, 26 (13), 3287–3295. https://doi.org/10.1158/1078-0432.ccr-19-2777.
(8) Bebb, D. G.; Agulnik, J.; Albadine, R.; Banerji, S.; Bigras, G.; Butts, C.; Couture, C.; Cutz, J. C.; Desmeules, P.; Ionescu, D. N.; Leighl, N. B.; Melosky, B.; Morzycki, W.; Rashid-Kolvear, F.; Sekhon, H. S.; Smith, A. C.; Stockley, T. L.; Torlakovic, E.; Xu, Z.; Tsao, M. S. Crizotinib Inhibition of ROS1-Positive Tumours in Advanced Non-Small-Cell Lung Cancer: A Canadian Perspective. Curr. Oncol. 2019, 26 (4), 551–557. https://doi.org/10.3747/co.26.5137.
(9) Keddy, C.; Shinde, P.; Jones, K.; Kaech, S.; Somwar, R.; Shinde, U.; Davare, M. A. Resistance Profile and Structural Modeling of Next-Generation ROS1 Tyrosine Kinase Inhibitors. Mol. Cancer Ther. 2022, 21 (2), 336–346. https://doi.org/10.1158/1535-7163.mct-21-0395.
(10) Ou, S.-H. I.; Hagopian, G. G.; Zhang, S. S.; Nagasaka, M. Comprehensive Review of ROS1 Tyrosine Kinase Inhibitors-Classified by Structural Designs and Mutation Spectrum (Solvent Front Mutation [G2032R] and Central β-Sheet 6 [Cβ6] Mutation [L2086F]). J. Thorac. Oncol. 2024, 19 (5), 706–718. https://doi.org/10.1016/j.jtho.2023.12.008.
(11) Pérol, M.; Li, W.; Pennell, N. A.; Liu, G.; Ohe, Y.; De Braud, F.; Nagasaka, M.; Felip, E.; Xiong, A.; Zhang, Y.; Fan, H.; Wang, X.; Li, S.; Lai, R. K.; Ran, F.; Zhang, X.; Chen, W.; Bazhenova, L.; Zhou, C. Taletrectinib in ROS1 + Non–Small Cell Lung Cancer: TRUST. J. Clin. Oncol. 2025, 43 (16), 1920–1929. https://doi.org/10.1200/jco-25-00275.
(12) Zagalo, D. M.; Sousa, J.; Simões, S. Quality by Design (QbD) Approach in Marketing Authorization Procedures of Non-Biological Complex Drugs: A Critical Evaluation. Eur. J. Pharm. Biopharm. 2022, 178, 1–24. https://doi.org/10.1016/j.ejpb.2022.07.014.
(13) Suleman, S.; Belew, S.; Kebebe, D.; Duguma, M.; Teshome, H.; Hasen, G.; Evelien Wynendaele; Duchateau, L.; De Spiegeleer, B. Quality-by-Design Principles Applied to the Establishment of a Pharmaceutical Quality Control Laboratory in a Resource-Limited Setting: The Lab Water. Int. J. Anal. Chem. 2022, 2022, 1–12. https://doi.org/10.1155/2022/2062406.
(14) Duarte, J. G.; Duarte, M. G.; Piedade, A. P.; Mascarenhas-Melo, F. Rethinking Pharmaceutical Industry with Quality by Design: Application in Research, Development, Manufacturing, and Quality Assurance. AAPS J. 2025, 27 (4). https://doi.org/10.1208/s12248-025-01079-w.
(15) Pramod, K.; Tahir, Ma.; Charoo, N.; Ansari, S.; Ali, J. Pharmaceutical Product Development: A Quality by Design Approach. Int. J. Pharm. Investig. 2016, 6 (3), 129. https://doi.org/10.4103/2230-973X.187350.
(16) Simões, A.; Veiga, F.; Vitorino, C. Question-Based Review for Pharmaceutical Development: An Enhanced Quality Approach. Eur. J. Pharm. Biopharm. 2024, 195, 114174. https://doi.org/10.1016/j.ejpb.2023.114174.
(17) D. Patil, H.; B Patil, C.; V. Patil, V.; S. Patil, P. An Overview on Quality by Design. Asian J. Res. Pharm. Sci. 2023, 49–55. https://doi.org/10.52711/2231-5659.2023.00009.
(18) Yang, S.; Hu, X.; Zhu, J.; Zheng, B.; Bi, W.; Wang, X.; Wu, J.; Mi, Z.; Wu, Y. Aspects and Implementation of Pharmaceutical Quality by Design from Conceptual Frameworks to Industrial Applications. Pharmaceutics 2025, 17 (5), 623. https://doi.org/10.3390/pharmaceutics17050623.
(19) Barbato, M. I.; Bradford, D.; Ren, Y.; Aungst, S. L.; Miller, C. P.; Pan, L.; Zirkelbach, J. F.; Li, Y.; Bi, Y.; Fan, J.; Grimstein, M.; Dorff, S. E.; Amatya, A. K.; Mishra-Kalyani, P. S.; Scepura, B.; Schotland, P.; Udoka, O.; Ojofeitimi, I.; Leighton, J. K.; Rahman, N. A.; Pazdur, R.; Singh, H.; Kluetz, P. G.; Drezner, N. FDA Approval Summary: Repotrectinib for Locally Advanced or Metastatic ROS1-Positive Non–Small Cell Lung Cancer. Clin. Cancer Res. 2024, 30 (16), 3364–3370. https://doi.org/10.1158/1078-0432.CCR-24-0949.
(20) Barbato, M. I.; Bradford, D.; Ren, Y.; Aungst, S. L.; Miller, C. P.; Pan, L.; Zirkelbach, J. F.; Li, Y.; Bi, Y.; Fan, J.; Grimstein, M.; Dorff, S. E.; Amatya, A. K.; Mishra-Kalyani, P. S.; Scepura, B.; Schotland, P.; Udoka, O.; Ojofeitimi, I.; Leighton, J. K.; Rahman, N. A.; Pazdur, R.; Singh, H.; Kluetz, P. G.; Drezner, N. FDA Approval Summary: Repotrectinib for Locally Advanced or Metastatic ROS1-Positive Non–Small Cell Lung Cancer. Clin. Cancer Res. 2024, 30 (16), 3364–3370. https://doi.org/10.1158/1078-0432.CCR-24-0949.
(21) Rais, T.; Shakeel, A.; Naseem, L.; Nasser, N.; Aamir, M. Repotrectinib: A Promising New Therapy for Advanced Nonsmall Cell Lung Cancer. Ann. Med. Surg. 2024, 86 (12), 7265–7269. https://doi.org/10.1097/MS9.0000000000002717.
(22) Rothschild, S. I.; Mauti, L. A. ROS1 Fusion-Positive Non-Small Cell Lung Cancer—Repotrectinib as a New Treatment Option. Transl. Cancer Res. 2025, 14 (6), 3272–3276. https://doi.org/10.21037/tcr-2025-263.
(23) Patel, R.; Rathod, D.; Shah, N.; Vaghela, V.; Patadiya, N. Inhibitors as a Therapeutic Frontier in Lung Cancer: Mechanism, Opportunities, and Molecular Docking Studies. Comput. Biol. Med. 2025, 196, 110889. https://doi.org/10.1016/j.compbiomed.2025.110889.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 American Journal of Psychiatric Rehabilitation

This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License permitting all use, distribution, and reproduction in any medium, provided the work is properly cited.
