Bacteriophage Therapy As An Alternative To Antibiotics: A Meta-Analysis
DOI:
https://doi.org/10.69980/ajpr.v28i5.451Abstract
Background: The rise of antimicrobial resistance has driven the search for alternative therapies. Bacteriophage (phage) therapy, which employs viruses to target specific bacterial pathogens, is regaining attention as a promising solution for multidrug-resistant (MDR) infections.
Objective: This meta-analysis aims to evaluate the clinical efficacy, safety, and treatment outcomes associated with phage therapy in managing MDR bacterial infections.
Methods: A systematic review and meta-analysis were conducted using data from observational studies and case reports published between 2000 and early 2025. Eligible studies included human subjects treated with phage therapy for laboratory-confirmed MDR infections. Data were extracted on clinical outcomes, adverse events, phage characteristics, and concurrent antibiotic use. Risk of bias was assessed using the ROBINS-I tool for observational studies and the Joanna Briggs Institute (JBI) checklist for case reports. A random-effects model was used to calculate pooled cure rates and assess heterogeneity.
Results: Eight studies involving 196 patients were included in the meta-analysis. The pooled clinical cure rate was 71% (95% CI: 0.59–0.81), with moderate heterogeneity (I² = 44.4%). The highest efficacy was observed in studies targeting complex infections like prosthetic joint infections and osteomyelitis. Adverse events were rare and generally mild. Case reports also showed a favorable safety profile and microbiological clearance in 8 out of 9 patients.
Conclusion: Bacteriophage therapy demonstrates substantial clinical promise as an adjunct or alternative to antibiotics for MDR infections. Despite limitations related to study design and heterogeneity, these findings support the integration of phage therapy into clinical practice and highlight the need for standardized protocols and randomized controlled trials.
References
1. Abedon, S. T., Kuhl, S. J., Blasdel, B. G., & Kutter, E. M. (2011). Phage treatment of human infections. Bacteriophage, 1(2), 66–85. https://doi.org/10. 4161/bact.1.2.15845
2. Centers for Disease Control and Prevention. (2021). Antibiotic resistance threats in the United States, 2019.
https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf
3. Corbellino, M., Kieffer, N., Kutateladze, M., Balarjishvili, N., Leshkasheli, L., Askilashvili, L., Tsertsvadze, G., Rimoldi, S. G., Nizharadze, D., & Hoyle, N. (2020). Eradication of a multidrug-resistant, carbapenemase-producing Klebsiella pneumoniae isolate following oral and intra-rectal therapy with a custom made, lytic bacteriophage preparation. Clinical Infectious Diseases, 70(9), 1998-2001.
4. Dedrick, R. M., Guerrero-Bustamante, C. A., Garlena, R. A., et al. (2019). Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus infection. Nature Medicine, 25(5), 730–733. https://doi.org/10.1038/s41591-019-0437-z
5. Green, S. I., Clark, J. R., Santos, H. H., Weesner, K. E., Salazar, K. C., Aslam, S., Campbell, J. W., Doernberg, S. B., Blodget, E., Morris, M. I., Suh, G. A., Obeid, K., Silveira, F. P., Filippov, A. A., Whiteson, K. L., Trautner, B. W., Terwilliger, A. L., & Maresso, A. (2023). A Retrospective, Observational Study of 12 Cases of Expanded-Access Customized Phage Therapy: Production, Characteristics, and Clinical Outcomes. Clinical Infectious Diseases, 77(8), 1079-1091. https://doi.org/10.1093/cid/ciad335
6. Gupta, P., Singh, H. S., Shukla, V. K., Nath, G., & Bhartiya, S. K. (2019). Bacteriophage therapy of chronic nonhealing wound: clinical study. The international journal of lower extremity wounds, 18(2), 171-175.
7. Kim, P., Sanchez, A. M., Penke, T. J. R., Tuson, H. H., Kime, J. C., McKee, R. W., Slone, W. L., Conley, N. R., McMillan, L. J., Prybol, C. J., & Garofolo, P. M. (2024). Safety, pharmacokinetics, and pharmacodynamics of LBP-EC01, a CRISPR-Cas3-enhanced bacteriophage cocktail, in uncomplicated urinary tract infections due to Escherichia coli (ELIMINATE): the randomised, open-label, first part of a two-part phase 2 trial. The Lancet Infectious Diseases, 24(12), 1319-1332. https://doi.org/10.1016/ S1473-3099(24)00424-9
8. Kortright, K. E., Chan, B. K., Koff, J. L., & Turner, P. E. (2019). Phage therapy: A renewed approach to combat antibiotic-resistant bacteria. Cell Host & Microbe, 25(2), 219–232. https://doi.org/10. 1016/j.chom.2019.01.014
9. Law, N., Logan, C., Yung, G., Furr, C.-L. L., Lehman, S. M., Morales, S., Rosas, F., Gaidamaka, A., Bilinsky, I., & Grint, P. (2019). Successful adjunctive use of bacteriophage therapy for treatment of multidrug-resistant Pseudomonas aeruginosa infection in a cystic fibrosis patient. Infection, 47, 665-668.
10. Lin, D. M., Koskella, B., & Lin, H. C. (2020). Phage therapy in a patient with Staphylococcus aureus bacteremia: A case series. The Lancet Infectious Diseases, 20(7), 878–885. https://doi.org/10. 1016/S1473-3099(20)30147-6
11. Macias-Valle, L., Vreugde, S., Psaltis, A. J., & Wormald, P.-J. (2019). Safety and Tolerability of Bacteriophage Therapy for Chronic Rhinosinusitis Due to Staphylococcus aureus.
12. Nadareishvili, L., Hoyle, N., Nakaidze, N., Nizharadze, D., Kutateladze, M., Balarjishvili, N., Kutter, E., & Pruidze, N. (2020). Bacteriophage therapy as a potential management option for surgical wound infections. Phage, 1(3), 158-165.
13. Nick, J. A., Martiniano, S. L., Lovell, V. K., Vestal, B., Poch, K., Caceres, S. M., Rysavy, N. M., de Moura, V. C., Gilick, J. J., Malcolm, K. C., Pacheco, J., Amin, A. G., Chatterjee, D., Daley, C. L., Kasperbauer, S., Gross, J. E., Armantrout, E., Cohen, K. A., Keck, A., . . . Ramos, K. J. (2025). Trial design of bacteriophage therapy for nontuberculous mycobacteria pulmonary disease in cystic fibrosis: The POSTSTAMP study. Journal of Cystic Fibrosis. https://doi.org/https://doi.org/10.1016/j.jcf.2025.03.669
14. Nir-Paz, R., Gelman, D., Khouri, A., Sisson, B. M., Fackler, J., Alkalay-Oren, S., Khalifa, L., Rimon, A., Yerushalmy, O., & Bader, R. (2019). Successful treatment of antibiotic-resistant, poly-microbial bone infection with bacteriophages and antibiotics combination. Clinical Infectious Diseases, 69(11), 2015-2018.
15. Ooi, M. L., Drilling, A. J., Morales, S., et al. (2019). Safety and tolerability of bacteriophage therapy for chronic rhinosinusitis due to Staphylococcus aureus: A randomized clinical trial. JAMA Otolaryngology–Head & Neck Surgery, 145(8), 723–729. https://doi.org/10.1001/jamaoto.2019.1191
16. Patel, D. R., Bhartiya, S. K., Kumar, R., Shukla, V. K., & Nath, G. (2021). Use of customized bacteriophages in the treatment of chronic nonhealing wounds: a prospective study. The international journal of lower extremity wounds, 20(1), 37-46.
17. Petrovic Fabijan, A., Lin, R. C., Ho, J., Maddocks, S., Ben Zakour, N. L., Iredell, J. R., & 2, W. B. T. T. K. A. V. C. C. R. M. S. S. I. G. T. (2020). Safety of bacteriophage therapy in severe Staphylococcus aureus infection. Nature microbiology, 5(3), 465-472.
18. Pirnay, J.-P., Djebara, S., Steurs, G., Griselain, J., Cochez, C., De Soir, S., Glonti, T., Spiessens, A., Vanden Berghe, E., & Green, S. (2024). Personalized bacteriophage therapy outcomes for 100 consecutive cases: a multicentre, multinational, retrospective observational study. Nature microbiology, 9(6), 1434-1453.
19. Qin, J., Wu, N., Bao, J., Shi, X., Ou, H., Ye, S., Zhao, W., Wei, Z., Cai, J., & Li, L. (2021). Heterogeneous Klebsiella pneumoniae co-infections complicate personalized bacteriophage therapy. Frontiers in cellular and infection microbiology, 10, 608402.
20. Rose, T., Verbeken, G., De Vos, D., Merabishvili, M., Vaneechoutte, M., Lavigne, R., Jennes, S., Zizi, M., & Pirnay, J.-P. (2014). Experimental phage therapy of burn wound infection: difficult first steps. International journal of burns and trauma, 4(2), 66.
21. Rubalskii, E., Ruemke, S., Salmoukas, C., Boyle, E. C., Warnecke, G., Tudorache, I., Shrestha, M., Schmitto, J. D., Martens, A., & Rojas, S. V. (2020). Bacteriophage therapy for critical infections related to cardiothoracic surgery. Antibiotics, 9(5), 232.
22. Schooley, R. T., Biswas, B., Gill, J. J., et al. (2017). Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrobial Agents and Chemotherapy, 61(10), e00954-17. https://doi.org/10.1128/AAC.00954-17
23. Sulakvelidze, A., Alavidze, Z., & Morris, J. G. (2001). Bacteriophage therapy. Antimicrobial Agents and Chemotherapy, 45(3), 649–659. https://doi.org/10.1128/AAC.45.3.649-659.2001
24. Tan, X., Chen, H., Zhang, M., Zhao, Y., Jiang, Y., Liu, X., ... & Ma, Y. (2021). Clinical experience of personalized phage therapy against carbapenem-resistant Acinetobacter baumannii lung infection in a patient with chronic obstructive pulmonary disease. Frontiers in cellular and infection microbiology, 11, 631585.
25. Tkhilaishvili, T., Winkler, T., Müller, M., Perka, C., & Trampuz, A. (2019). Bacteriophages as adjuvant to antibiotics for the treatment of periprosthetic joint infection caused by multidrug-resistant Pseudomonas aeruginosa. Antimicrobial agents and chemotherapy, 64(1), 10.1128/aac. 00924-00919.
26. World Health Organization. (2022). Antimicrobial resistance. https://www.who.int/news-room/ fact-sheets/detail/antimicrobial-resistance
Downloads
Published
Issue
Section
License
Copyright (c) 2025 American Journal of Psychiatric Rehabilitation

This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License permitting all use, distribution, and reproduction in any medium, provided the work is properly cited.